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Alzheimer‟s disease (AD) is a neurodegenerative disorder characterized by beta-amyloid 

(Aβ) aggregation/oligomerization, biometal dyshomeostasis, oxidative stress, and 

neuroinflammation. The multifactorial nature of AD may indicate the therapeutic 

potential of multifunctional ligands that tackle various risk factors simultaneously as 

effective AD-modifying agents. This notion is further supported by the fact that while 

numerous AD-modifying agents targeting one single risk factor have been developed and 
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a number of them entered clinical trials, none of them has been successfully approved by 

the FDA. Furthermore, neuronal cell membrane/lipid rafts (CM/LR) have been 

demonstrated to associate with all the indicated risk factors, indicating that this 

relationship can be exploited therapeutically to design strategically distinct 

multifunctional ligands by incorporating CM/LR anchorage into molecular design. With 

the long-term goal of developing multifunctional ligands to slow or stop the progression 

of AD, recently we have embarked on the development of bivalent multifunctional Aβ 

oligomerization inhibitors (BMOIs) as potential AD-modifying agents. These BMAOIs 

contain curcumin as the multifunctional moiety and cholesterol as the CM/LR anchorage 

moiety linked by a spacer to co-target AβOs, CM/LR, and oxidative stress. The 

hypothesis of the BMAOI strategy is that BMAOIs will anchor/target the multifunctional 

AβO inhibitor moiety inside, or in the vicinity of, CM/LR in which Aβ oligomerization, 

Aβ/biometal interaction and oxidative stress occur to efficiently interfere with these 

processes. In support of this hypothesis, proof-of-concept of the BMAOIs strategy has 

been reached through our preliminary studies. Our results demonstrated that: 1) BMAOIs 

containing curcumin as the multifunctional AβO inhibitor and cholesterol as CM/LR 

anchor primarily localize to CM/LR while curcumin does not; 2) BMAOIs with optimal 

spacer length efficiently inhibit the production of intracellular AβOs and protect MC65 

cells from AβO-induced cell death (EC50~3 µM) while curcumin exhibits no significant 

activity; 3) these active BMAOIs retain curcumin‟s antioxidant and metal complexation 

properties. Our preliminary studies also demonstrated the critical roles of spacer length 

and connectivity in the molecular design of BMAOIs and one lead compound was 
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identified for further structural modification and optimization. Furthermore, this lead 

compound was shown to cross the blood-brain barrier (BBB) in a preliminary in vivo 

study as well as bind to Aβ plaques. Taken together, these results clearly reach the proof-

of-concept of BMAOIs and confirm the rationale of designing BMAOIs to develop 

potential AD-modifying agents.     

     In this thesis, we continued the exploration and validation of the BMAOI strategy by 

designing and biological characterizing a series of BMAOIs containing cholesterylamine 

as the CM/LR anchorage moiety and curcumin as the multifunctional moiety. Ten 

BMAOIs with the spacer length of 15, 17, 19, 21, and 23 atoms were designed and 

synthesized. Initially, these BMAOIs were tested for the neuroprotective activity against 

the AβO-induced cytotoxicity in human neuroblastoma MC65 cells. Then, Western blot 

analysis was performed for active BMAOIs to confirm the association of neuroprotection 

and suppression of AβOs. Furthermore, active BMAOIs were examined for antioxidant 

and metal complexation properties. Finally, Aβ plaque binding was examined using 

transgenic AD mice brain sections. Our results demonstrated that the same spacer length 

but different connectivity are preferred in this new series of BMAOIs for neuroprotective 

activity as that of the lead compound from cholesterol series. Moreover, the 

neuroprotection activity is closely associated with the inhibition of AβOs as demonstrated 

by Western blot analysis. In addition, the active BMAOIs retain the antioxidant and 

biometal binding properties of curcumin. More importantly, the binding affinity to the Aβ 

plaques was again confirmed for the new BMAOIs containing cholesterylamine. In 

summary, the design and characterization of the new series BMAOIs further confirmed 
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the rationale of BMAOI strategy and their potential  to lead to a new direction in 

development of effective AD-modifying and treatment agents. 
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Chapter 1 Introduction 

1.1 Alzheimer’s disease 

Alzheimer‟s disease (AD) is a fatal neurodegenerative disorder characterized by a 

progressive and global deterioration of mental function, most notably in cognitive 

performance. The manifestation of AD begins with a mild cognitive impairment that 

progressively develops over the next few years into a severe dementia and mental 

disability. At the late stage of AD, patients are unable to respond to their environment 

and to carry on with normal social interactions. More often patients become unable to 

control their own movement and to perform basic daily activities including eating or 

using the toilet. 

 

Figure 1. A crosswise “slice” through middle of the brain between the ears. In 

Alzheimer’s brain cortex shrivels up. Hippocampus shrinks severely and ventricles 

grow longer.
1
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Currently, there is no treatment or prevention available for AD; the only available drugs 

approved by the FDA are for the short term symptomatic treatment of dementia, which 

with disease progression lose their efficacy leaving the patients and their families totally 

hopeless.
1
 

1.2 History of AD research 

AD was first described in 1906 by a German physician named Alois Alzheimer. 

Alzheimer described changes in the brain of a 56-year-old woman, Auguste D., who died 

of progressive dementia in post-mortem tissue analysis. 

                                              

Figure 2.  Pictures of Dr. Alois Alzheimer and Mrs. Auguste D.
1
  

He demonstrated the presence of two specific features, neurofibrillary tangles and senile 

plaques, in the brain tissue associated with a severe neuronal loss. It wasn‟t until the 

introduction of electron microscopy that the neurofibrillary tangles were characterized as 

paired helical filaments and later were characterized to be filaments of 

hyperphosphorylated tau protein. As for the senile plaques, it wasn‟t until 1984 that the 

primary proteinaceous constituent of the plaques was discovered; it was found to be a 4-

KDa protein, and by amino acid sequencing it was found to be a novel 42 amino acids 

long protein, now called amyloid beta (Aβ).
1, 2
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Certain similarities between AD and Down‟s syndrome helped in determining the nature 

and origin of the senile plaques. In addition to the mental disability observed in the two 

diseases and the high risk of developing Alzheimer‟s like-dementia among Down‟s 

syndrome patients living beyond age 40, histopathological examination of the brain of 

patients with Down‟s syndrome revealed the formation of similar histopathological 

features as in the brain of patients with AD including the senile plaques.
3
 It was later 

found that these plaques are populated with the same 4-KDa amyloid protein.  

1.3 Epidemiology 

AD is the most common cause of dementia within the elderly population.
4
 In 2009 there 

were an estimated 5.3 million Americans affected by AD; without a cure or a means to 

prevent the disease and with the population growing older and an aging baby boom 

generation, it is estimated that this number will triple by 2050.
5
  The biggest risk factor 

for dementia is age; the prevalence of dementia with increasing age follows an 

exponential growth pattern, doubling approximately every 5 years of increase in age 

starting from the age of 65. It is estimated that 0.8% of 65 years old people, 1.6% of  70 

year old, 3.3% of 75 year old, 6.5% of 80 year old, 12.8% of 85 year old, and 30.1% of  

>85 year old suffer from dementia in north America. 

AD patients have a shorter life expectancy compared to the same age non-demented 

population, and according to the Center for Disease Control and Prevention, AD is the 6
th

 

leading cause of death among the general population, and the 5
th
 leading cause of death 

among the elderly in the United States. The mechanism by which AD leads to death is 
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ambiguous, while impairment of correct judgment leading to fatal accidents is a common 

cause, it has widely been reported that bronchopneumonia is the main cause of death. 

There is no direct link between AD and pneumonia, however severe AD frequently 

causes complications such as immobility, swallowing disorders or malnutrition, which 

could be the reason for the increased risk of patients to develop pneumonia. 

1.4 Symptoms and Stages of AD 

AD symptoms vary among different individuals but in general patients, follow a certain 

pattern of disease progression. Different methods have been developed for staging the 

disease progression, but most commonly the disease has been divided into three main 

stages: mild, moderate and severe.
6
 

In mild AD, patients experience occasional loss of recently acquired memory (short term 

memory), confusion, disorganized thinking, impaired judgment, and disorientation to 

time, space and location, which may lead to unsafe wandering and socially inappropriate 

behavior. With disease progression, these symptoms become more frequent and patient‟s 

memory further deteriorate. For example many patients find difficulties remembering 

familiar faces and start to mix peoples identity like a brother for a friend. Further in 

advanced stages of AD, patient‟s memory is severely affected, that they might completely 

forget close family members, and the patients might start to find difficulty in walking, 

speaking, and eating. At this stage, patients needs total assistance for daily living 

activities. 
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More recently, a period of very subtle changes in memory performance that prelude the 

frank dementia of AD was described, this phase was called MCI (mild cognitive 

impairment). Majority of patients with MCI progress to AD, so it is believed to be an 

important stage, which if detected early and with accurate means, could be the proper 

timing to begin with the treatment of AD, before further damage to the brain occurs.
7, 8

 

1.5 Histopathological features 

Since the description of the two histopathological features of AD by Alois Alzheimer, the 

senile plaques and the neurofibrillary tangles are considered the two classical hallmarks 

of AD, however, more recently gliosis, neuroinflammation, and oxidative stress have 

been recognized to be as important as the classical hallmarks of AD.
9
 

Neurofibrillary tangles 

Neurofibrillary tangles are intracellular deposits that are formed of a paired helical 

filament of aggregated hyperphosphorylated tau protein. Under physiological conditions 

tau protein is essential for normal neuronal functions and survival; it binds microtubules 

and promotes normal axonal transport and integrity.
10

 Phosphorylation state of tau 

determines its binding affinity to microtubules. In AD, Tau proteins become 

hyperphosphorylated, which triggers their detachment from microtubules, which 

consequently leads to their disintegration and to an interruption of axonal transport and 

neuronal death. The hyperphosphorylated tau proteins misfold and aggregate forming the 

neurofibrillary tangles. 
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Figure3. Electron microscope picture of healthy brain area versus brain with 

tangles. In healthy area, transport system which transports food material, cell part 

and other key material is organized like railway track. Tau protein keeps the track 

straight. In Alzheimer’s disease tau collapses and forms tangles. Tracks fall apart 

and no longer stay available for transport.
1
 

The exact mechanism that leads to this hyperphosphorylation is not known, but evidence 

suggests that there‟s an imbalance between phosphorylation and dephosphorylation; tau 

kinases are responsible for tau phosphorylation while tau phosphatases are responsible 

for its dephosphorylation. The kinases that are found to be upregulated in AD include 

glycogen synthase kinase 3 (GSK3), cyclin-dependent protein kinase 5 (CDK5), 

calcium/calmodulin-dependent protein kinase II (CaMK2), phospho70S6 (p70S6) kinase, 

c-Jun N terminal kinase (JNK), and p38 kinase. The tau phosphatases that are found to be 

down regulated in AD are protein phosphatases PP1, PP2A, and PP2B.
10
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The filaments that compose NFTs have a characteristic ultra structure, consisting of two 

ribbon-like strands, twisted around each other to form paired helical filaments (PHFs). 

The diameter of each PHF alternates between 20 nm and 8 nm with a regular periodicity 

of 80 nm.
11

 NFTs are frequently found in the brain of non-demented elderly individuals, 

but not in the isocortex: It has been shown previously that the neurofibrillary pathology in 

the brain accumulates in a hierarchical topographic fashion, with the trans entorhinal 

cortex affected first (stages I and II), followed by the entorhinal cortex and hippocampus 

(stages III and IV), and finally the isocortex (stages V and VI). Most patients with 

dementia are found to have stage V or VI pathology, while those at lower stages usually 

show no signs of dementia. In general, NFTs tend to fill much of the cell body and apical 

dendrite, giving a characteristic „flame‟ shape. In neurons with a more rounded contour, 

the NFTs are more globular. In certain brain regions, such as the hippocampus, 

extracellular (ghost) tangles may persist in the extracellular space after the neuron dies.
12

 

Senile plaques 

Senile plaques (SPs) are extracellular spherical lesions, measuring up to 200 µm in 

diameter, they consist of a central deposit of Aβ protein, associated with various localized 

cellular changes.
13, 14, 15

 Most of the Aβ that accumulates in senile plaques is the longer 

Aβ42 species. In addition to Aβ, a variety of other molecules may be present in the 

extracellular component of SPs, including immune system proteins (such as complement 

and cytokines), growth factors, adhesion molecules, ApoE, and proteoglycans. 
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Figure 4. Healthy versus Alzheimer brain tissue under microscope. Healthy brain 

tissue has more neurons and synapses compare to Alzheimer tissue.
1 

A is a 4-KDa protein consisting of 37 to 42 amino acids, it is generated by a sequential 

cleavage of the transmembrane protein amyloid precursor protein (APP), by two 

proteases:  secretase cleaves APP at the N-terminal and produces a 99 amino acid long 

transmembrane fragment called “C99”, and γ secretase cleaves at the C-terminal of C99 

to release A
16

. The  secretase cleavage site is considered to be invariable at position 1 

of A, however, γ secretase cleavage is found to be variable; cleaving C99 at position 40 

of A, and less frequently at positions 37, 38, 39, and 42.
17

 

SPs can be classified into four different morphological types: diffuse plaques, primitive 

neuritic plaques, classical neuritic plaques, and compact plaques.
15 

Despite previous 

evidence suggesting that these different types are formed independently, it has been 

proposed that they evolve from one type into another.
15

 The primitive and classical 
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neuritic senile plaques contain a cluster of radially oriented degenerated neuronal 

processes. These „dystrophic neurites‟ are terminal dendrites and axons with dense bodies 

and vesicular structures. In classical neuritic SPs, the dystrophic neurites surround a 

central dense amyloid core, with less compact amyloid fibrils deposited between the 

neurites. Primitive neuritic SPs lack a well-defined central core of amyloid. Compact 

plaques have only a dense amyloid core, in the absence of any cellular component. 

Diffuse SPs are formed by an amorphous deposition of non-fibrillar Aβ that is not 

associated with any alteration in the cellular environment. Compact and diffuse senile 

plaques do not contain dystrophic neurons, therefore they don‟t fit within the 

classification of “neuritic” senile plaques. Neuritic senile plaques are the senile plaques 

associated with AD, while the brain of non-demented elderly people shows almost 

exclusively the diffuse type.
18

 

Although neurofibrillary tangles and senile plaques are considered the 2 classical 

hallmark of AD, it is still debated whether they are a cause or consequence of AD 

pathogenesis and whether there‟s a relationship between the two lesions, in which one of 

them induces the formation of the other. But many evidence support a central role for Aβ 

rather than NFT in AD pathogenesis including direct evidence of neurotoxicity as shown 

in cell cultures and in animal studies, 
19, 20

 and the fact that all genetic mutations that were 

shown to cause AD affect the production of Aβ while none of the mutation causing AD 

are associated with tau protein or the enzymes responsible for its phosphorylation.
21

 

Mutations in the tau gene on chromosome 17 have been associated with the 

frontotemporal dementias with Parkinsonism (FTDP-17). These pathologies are 
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characterized with aggregations of tau in neurons and glia without the presence of 

amyloid deposits, and they produce a clinical phenotype of frontotemporal dementia 

(FTD) which is clinically distinguishable from AD.
20

 

The normal physiological function of Aβ or its precursor protein is still not clear. To 

understand their physiological functions, APP knockout mice have been generated and 

these mice were found to be viable and fertile, however they were found to be 15-20% 

underweight compared with age-matched controls, exhibit reduced grip strength and 

locomotor activity, and show signs of reactive astrocytes and activated microglia.
22

 This 

shows that APP and/or Aβ are important molecules for normal neuronal functions. It was 

suggested previously that APP can serve as a cell surface receptor, a heparin binding site, 

a precursor to a growth-factor-like agent, and as a regulator of neuronal copper 

homeostasis, but further studies are needed to confirm the normal physiological functions 

of APP.
23, 24

 

In 1990, synthetic Aβ peptides were reported for the first time to be cytotoxic towards 

primary neuronal cultures; while low concentration were found to induce a neurotrophic 

effect to undifferentiated hippocampal neurons, higher concentration were found to be 

highly toxic, and the region between amino acids 25 and 35 of Aβ was found to be 

essential for inducing such neurotoxicity.
25

 This toxicity was later shown to be dependent 

on the aggregation state of Aβ and reversal of Aβ aggregation resulted in the loss of such 

toxicity; in addition to its importance in neurotoxicity, the region 25-35 of Aβ was found 

to be also essential for aggregation, supporting an important role for aggregation in 

inducing the toxicity of Aβ.
26, 27

 The important role of aggregation was later confirmed in 
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animal studies; microinjection of aggregated form, but not soluble form, of Aβ in the 

cerebral cortex resulted in extensive neuronal loss, tau hyperphosphorylation, and 

microglial activation in the brain of aged rhesus monkeys. Interestingly, the same level of 

aggregated Aβ was not toxic to young rhesus monkeys and mice. Higher levels of Aβ 

were found to be neurotoxic in mice, however this neurotoxicity is not associated with 

the formation of neurofibrillary tangles. This dissociation between Aβ toxicity and 

presence of neurofibrillary tangle questioned the validity of the amyloid hypothesis. 

However more recently it was found that iNOS knockout mice overproducing Aβ 

develop AD like neuropathological features including neurofibrillary tangles, neuronal 

loss, and behavioral changes, which suggests that low levels of nitric oxide in aged brain 

could be the factor that increases the susceptibility towards Aβ.
28, 29

 

In addition to region 25-35 of Aβ, the last two amino acids of Aβ42, were found to 

increase dramatically the aggregation potential and toxicity of Aβ42 compared to Aβ40.
20

 

This could explain the reason why Aβ42 is the main constituent of the senile plaques 

despite the fact that the most abundant product of APP cleavage is Aβ40.
20

 Further support 

for an important role of Aβ42 in neurotoxicity compared to Aβ40 was obtained using mice 

selectively producing Aβ40 or Aβ42 independently of APP production. Mice expressing 

high levels of Aβ40 did not develop overt amyloid pathology. In contrast, mice expressing 

lower levels of Aβ42 accumulate insoluble Aβ42 and developed compact amyloid plaques 

and diffusible Aβ deposits. When mice expressing Aβ42 were crossed with mutant APP 

transgenic mice (Tg2576), there was also a massive increase in amyloid deposition.
30
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Aβ aggregation starts with the formation of dimers and trimers followed by the formation 

of low molecular weight oligomers, protofibrils and finally mature fibrils.
19

 While fibrils 

were found to be more toxic than monomers, low molecular weight oligomers were the 

most toxic
31

 and the presence of plaques was found not to be essential for Aβ to induce 

neuro and synaptotoxicity.
32

 Soluble and highly toxic forms of amyloid aggregates were 

called Aβ-derived diffusible ligands (ADDLs) and they were found to be formed mainly 

of 12 unit of Aβ.
33, 34

 ADDLs were first produced in vitro, however they were later 

discovered in vivo, and in comparing AD brain tissues to non demented controls, ADDLs 

were found to be 12 times more abundant in AD patients.
35

 

Many attempts to use the level of Aβ in the cerebrospinal fluid (CSF) as a marker for AD 

have failed, in fact the brain of many non demented elderly people show high levels of 

Aβ and abundant senile plaques formation. However careful examination of the type of 

plaques revealed that while AD patient develop all 4 types of plaques, non demented 

individuals develop only the diffuse senile plaques, with rare neuritic senile plaques. 

Accordingly it was suggested that a pathological process is responsible for the conversion 

of diffuse plaques into neuritic senile plaques. One of these processes that might play an 

important role and that gained much attention recently is neuroinflammation, especially 

since an important difference between diffuse senile plaques and neurotic senile plaques 

is the presence of localized gliosis: activated microglia are often present within the 

plaque boundary and reactive astrocytes are found on the periphery. This suggests that 

the presence of Aβ is not sufficient to develop AD; however it is important to trigger an 

inflammatory reaction which is responsible for the neurotoxicity.
9, 14, 15
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Neuroinflammation 

In addition to the two classical hallmarks of AD, recent evidence has shown that 

neuroinflammation plays an important role in the pathology of AD, in fact when Alois 

Alzheimer described the brain pathology of AD, he used the term “Gliosis” to describe 

the changes he observed in glial cells.
9
 

Not a long time ago, the brain was considered to be an immune incompetent organ and 

until recently neuroinflammation was ignored in the field of AD research, but the 

epidemiological studies that showed a decreased risk of developing AD with a history of 

NSAIDs consumption,
36, 37, 38, 39

 combined with the demonstration of an increased level 

of inflammatory markers in AD brain tissue, fueled the research in that field and lots of 

evidence have drawn a direct link between neuroinflammation and AD
9
. 

In physiological conditions, neuroinflammation is part of the innate immune system that 

protects the brain from harmful stimuli. Acute local inflammatory reactions are more 

often safe with limited and reversible damage; however chronic inflammatory reactions, 

in the CNS as well as in any other organ, will more often lead to tissue damage and 

scaring.
9
 Brains of patients with AD display many signs of neuroinflammation including 

high level of cytokines and chemokines, 
9
 activation of classical and non-classical 

complement pathways, microglial activation, and astrocyte reactivity.
40

 

The etiology of the inflammatory reaction observed in AD is still debated, but lots of 

evidence point to the Aβ peptide as the inflammatory triggering agent,
40, 41

 either directly 

by activating microglia and astrocytes, or indirectly by inducing neurodegeneration 

which will then start an inflammatory reaction. In cell cultures, both mechanisms were 
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observed; Aβ can induce neuronal death, and it was also shown that Aβ can directly 

induce inflammatory responses by activating macrophages and microglia.
42, 43

 

Oxidative stress: 

An oxidative imbalance occurs, when production of oxidant species exceeds the 

endogenous antioxidant ability to destroy them. This leads to cellular oxidative stress, 

molecular oxidative damage, altered cellular functions and finally cell death. The CNS is 

highly populated with polyunsaturated fatty acids (PUFAs) which has high metabolic 

oxidative rate and high levels of potent pro-oxidants like transition metals and ascorbate. 

Therefore, CNS is at high risk for oxidative imbalance. Altered mitochondrial function, 

the Aβ peptides themselves and the presence of unbound transition metals are the sources 

of oxidant species in the CNS. In early stages of AD, Aβ enters mitochondria, increases 

generation of ROS and induces oxidative stress. In mitochondrial membranes Aβ and 

APP can block transport of protein and disrupt the electron transport chain followed by 

irreversible cell damage at the end. Oxidative stress is characterized by protein, DNA, 

RNA oxidation or lipid peroxidation. AD brain has all these signature markers of 

oxidative stress and this concept was originally used to support the „oxidative stress 

hypothesis‟ of AD.
44-47

 

1.6 Genetics of AD 

Gamma secretase is a multi-subunit transmembrane protease complex; it is formed of 4 

different subunit : presenilin 1 (PSEN1) or presenelin 2 (PSEN2), nicastrin, APH-1 

(anterior pharynx-defective 1), and PEN-2 (presenilin enhancer 2). The presenilins are 
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the catalytic subunit of gamma secretase.
48

 It was found that certain mutations in PSEN1 

(on chromosomes 14) and PSEN2 (on chromosomes 1) and other mutations in APP (on 

chromosome 21) are linked with autosomal dominant AD inheritance, and further studies 

on these mutations revealed that they are associated with either a total increase of Aβ 

production or with an increase in the production ratio of Aβ42/Aβ40. As AD caused by any 

of these mutations is genetic and follows an autosomal dominant inheritance it is referred 

to as familial Alzheimer‟s disease (FAD); FAD is usually characterized by an early 

disease onset (before 65 years old). By 2008, it was found that 32 different mutations in 

the APP gene account for 18% of FAD, 165 different mutations in the PS1 gene account 

for 78% of FAD, and 12 different mutations in PS2 gene account for 4% of FAD.
48

 

Despite the numerous mutations associated with AD, FAD accounts for less than 5% of 

all AD cases. In the rest of AD cases, also called sporadic AD or late onset AD, there is 

no genetic link associated with the development of AD, but apolipoprotein E gene 

polymorphism has been associated with an increase risk of developing AD. The E4 allele 

of ApoE is considered to be the only established genetic risk factor for the late onset 

AD.
49, 50, 51

 

ApoE is a 299 amino acid protein that mediates the binding of lipoproteins to the low-

density lipoprotein (LDL) receptor and the LDL receptor-related protein (LRP), it is the 

major apolipoprotein expressed in the brain and it is thought to be important for 

mobilizing lipids during normal development of the nervous system and during 

regeneration of peripheral nerves after injury.
52, 53

 It exists in three major isoforms: 

ApoE2, ApoE3 and ApoE4 which arise from different alleles (e2, e3, and e4) of a gene 
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on chromosome 19. The e3 allele is the most common form among the general 

population, accounting for about 75% of all alleles, whereas e2 and e4 account for 10% 

and 15%, respectively.
53

 

The mechanism by which ApoE alleles affect the occurrence of AD is not clear. ApoE is 

one of the proteins found in the neuritic plaques, and apoE4 binds Aβ more readily than 

apoE3 does. AD patients who are homozygous for the e4 allele has larger and denser 

senile plaques than patients homozygous for the e3 allele.
54 

Therefore apoE4 may 

facilitate plaque formation or reduce the clearance of Aβ from brain tissue. However, 

more recent evidence suggest that ApoE plays an important role in clearing Aβ from the 

brain, and that APOE4 is less effective than APOE3 or APOE2, which support other 

evidence suggesting that sporadic AD is caused by a decrease in Aβ degradation and 

clearance from the brain.
55-58

 

1.7 Diagnosis of AD 

Early detection of AD can be very challenging, while its identification later in its course 

is very often more obvious. At the moment, the diagnosis of AD is only made clinically 

and with a certain amount of uncertainty; there has not been any test or imaging 

technique that proved to be accurate enough for its application in the diagnosis of AD. In 

diagnosing patients with dementia, AD can only be suspected after other form of 

dementia has been ruled out, this include: vascular dementia, frontotemporal dementia,  

corticobasal degeneration, progressive supranuclear palsy, dementia with Lewy body, 

Parkinson disease dementia, hypothyroidism, syphilis, normal-pressure hydrocephalus, 
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nutritional deficiencies such as vitamin B12, folic acid, and thiamine deficiency, and 

prion diseases including Creutzfeld– Jacob Disease (CJD), Gerstmann–Straussler–

Scheinker syndrome (GSS), fatal familial insomnia (FFI), Kuru and Alpers syndrome. 

The ultimate diagnosis of AD can only be made by histopathological analysis of 

postmortem brains from patients diagnosed clinically of having AD.
59

 

1.8 Treatment strategies of AD 

Acetylcholine esterase inhibitors 

Direct analysis of neurotransmitter content in the cerebral cortex shows a reduction of 

many neurotransmitters that parallel neuronal loss; impairment in the cholinergic 

neurotransmission is found to be the most consistent finding in AD brains and the degree 

of damage to cholinergic system correlates closely with the severity of AD;
60

 so it was 

hypothesized that the lack of acetylcholine is responsible for the dementia, especially that 

central cholinergic antagonists such as scopolamine can induce a confusional state that 

resembles the dementia of AD;
61

 for these reasons the “cholinergic hypothesis” of AD 

emerged stating that dementia in AD is caused by a neurodegeneration affecting 

cholinergic neurons, and it was hypothesized that supporting the cholinergic deficiency 

by drugs that activate the cholinergic receptors or prevent the degradation of 

acetylcholine would be beneficial. In postmortem examination of AD brains, the most 

severe neurodegeneration is usually found in the hippocampus, temporal cortex, and 

nucleus basalis of Meynert.
62

 It was suggested that the reduction of acetylcholine may be 

related in part to degeneration of the cholinergic neurons in the nucleus basalis of 
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Meynert that project to many areas of the cortex. According to the “amyloid hypothesis”, 

Aβ is responsible for the neurodegeneration leading to the cholinergic deficiency.
60

 

One approach to elevate the level of acetylcholine is to inhibit the enzyme responsible for 

its degradation: acetylcholine esterase. All drugs presently available in the market for the 

treatment of mild to moderate AD are acetylcholine esterase inhibitors. The main 

problem with this class of drugs is that they support the synaptic transmission of a 

progressively degenerating neuronal network, which with further degeneration the 

patients fail to respond to this drug family.
63, 64

 

Four inhibitors of AChE are currently approved by the FDA for the treatment of AD:  

tacrine (COGNEX), donepezil (ARICEPT), rivastigmine  (EXCELON), and  galantamine  

(RAZADYNE). 

 

 Tacrine is a potent centrally acting inhibitor of AChE.
63, 64

 The side effects of tacrine 

often are significant and dose-limiting; abdominal cramping, anorexia, nausea, vomiting, 
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and diarrhea are observed in up to one-third of patients receiving therapeutic doses, and 

elevations of serum transaminases, marker of liver injury, are observed in up to 50% of 

those treated. Because of significant side effects, tacrine is not widely used clinically. 

Donepezil is a selective inhibitor of AChE in the CNS with little effect on AChE in 

peripheral tissues. It produces modest improvements in cognitive scores in AD patients 

and has a long half-life, allowing once-daily dosing. Rivastigmine and galantamine are 

dosed twice daily and produce a similar degree of cognitive improvement. Adverse 

effects associated with donepezil, rivastigmine, and galantamine are similar in character 

but generally less frequent and less severe than those observed with tacrine; they include 

nausea, diarrhea, vomiting, and insomnia. Donepezil, rivastigmine, and galantamine are 

not associated with the hepatotoxicity that limits the use of tacrine, but due to the longer 

half life of Donepezil, it is preferred over rivastigmine or galantamin.
63

 

NMDA receptor antagonist 

An alternative strategy for the treatment of AD is the use of the NMDA glutamate 

receptor antagonist memantine (NAMENDA). Memantine was approved in 2003 by the 

FDA for the treatment of mild to severe cases of AD; however the efficiency of 

memantine is surrounded with lots of controversies. 
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Glutamate is the principle excitatory neurotransmitter in the cortical and hippocampal 

neurons. Neurochemical analysis of AD brain shows excess glutamate concentrations. 

While moderate activation of the glutamate receptor, NMDA, is essential for learning and 

memory, excessive activation increases the vulnerability of CNS neurons leading to 

neuronal degeneration.
65

 Memantine blocks glutamate gated NMDA channels in an 

activation dependant manner, thereby blocking excessive and pathological activation 

without affecting the moderate and normal physiological activation.
66, 67, 68

 In contrast to 

ACIs, which are approved for the early and intermediate stages of AD only, memantine is 

approved for treating the advanced stages of AD.
65

 Data regarding memantine efficiency 

for AD treatment are controversial. A randomized clinical trial on 252 patients found that 

memantine significantly reduces deterioration of mental functions.
69 

However this was 

not confirmed by a more recent double blind, placebo-controlled trial involving 350 

patients. This trial showed no statistically significant treatment benefit at study end point 

on any primary or secondary outcomes measured after 24 weeks. A Cochrane systematic 

review reported only a small beneficial effect at 6 months in moderate to severe AD on 

cognition, Activities of Daily Living (ADLs), and behavior supported by clinical 

impression of change. There is evidence that combination therapy with donepezil may 

provide better outcomes with regards to cognition, ADLs, global outcome, and behavior 

as illustrated in a 24-week trial in 322 patients.
70
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Aβ lowering strategies 

According to the amyloid hypothesis, Aβ plays a central role in the etiology of AD. This 

hypothesis initiated a wide spread research to find drugs that would lower the level of Aβ 

in the brain; this includes the inhibition of beta secretase, modulation or inhibition of 

gamma secretase, and immunization against Aβ.
65, 71

 Drugs that lower the level of Aβ are 

believed to be disease modifying agents and would provide an advantage over the 

symptomatic treatment of acetylcholine esterase inhibitors.
72

 

Active immunization against Aβ faced recently big challenges due to severe 

immunological reactions leading to encephalopathy and death observed among some 

patients participating in the clinical trial: following the success in the reduction of Aβ 

plaques in animals by active immunization against Aβ, 
73

 clinical trials were conducted 

on AD patients by Elan Pharmaceuticals/Wyeth. Phase IIa clinical trials were suspended 

when 6% of patients in the active treatment group developed meningoencephalitis 

characterized by subacute neurologic deterioration, lymphocytic pleocytosis, and white 

matter abnormalities on imaging, by the time the trial was halted five patients receiving 

the drug have died. Passive immunization, using monoclonal antibodies, is still under 

investigation, especially that this technique is considered to be a safer approach compared 

to active immunization. 

Beta secretase (BACE1) inhibition is still a major target, as it has been reported 

previously that BACE1 knockout mice are healthy with no detectable pathological 

consequences.
74

 The major challenges facing BACE inhibitors is their molecular weight 

which greatly affects their ability to cross the blood brain barrier,
75

 this fact made it 
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difficult for any BACE inhibitor to reach clinical trials, however with recent progress, 

newer and smaller BACE inhibitors that crossed the BBB in animal models have 

emerged giving hope for this approach. As for gamma secretase inhibition, it was 

associated with severe side effects, including gastrointestinal toxicity and eosinophilia;
76-

79
 the reason for these side effects is due to the inhibition of notch cleavage: notch is a 

transmembrane protein that is cleaved by gamma secretase, the same enzyme that cleaves 

APP, to release an intracellular domain that is then translocated to the nucleus where it 

acts as a transcription factor; Notch is essential for the differentiation of different cell 

types including cells of the gut and the immune system, which explains the eosinophilia 

and gut toxicity that are associated with gamma secretase inhibition.
76-80

 However it has 

been suggested recently that the gamma secretase enzyme can be modulated by a group 

of NSAIDs in order to cleave C99 less frequently at position 42 leading to a selective 

reduction of Aβ42 production without affecting notch cleavage.
64

 The link between 

NSAIDs and Aβ42 production started when epidemiological studies suggested that 

chronic NSAIDs consumption reduced the risk, delayed the onset, and slowed the 

progression of AD. It was thought that this activity is due to the anti-inflammatory 

properties of NSAIDs, including the inhibition of microglial activation, however 

evidence has shown that a subset of NSAIDs, including flurbiprofen, sulindac sulfide, 

and indomethacin, are capable of lowering the levels of Aβ42 and the ratio of Aβ42/Aβ40. 

The term selective amyloid lowering agents (SALA) was coined for this “new” drug 

class, represented by R-flurbiprofen (tarenflurbil), a drug that provided positive phase 2 

clinical trial data in AD patients before failing in a phase 3 trial.
81, 82
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The failure of tarenflurbil raises concern about the validity of the “amyloid hypothesis” 

as a causal factor for AD. However, by thorough analysis of the in vivo pharmacological 

and pharmacokinetic studies and the setup of the clinical trial, many weak points can be 

discovered raising question if tarenfluril is a valid candidate to be used for judging the 

amyloid hypothesis and if the setup of the clinical trial as to the time of drug 

administration is a valid method: Tarenflurbil showed consistent evidence for activity in 

lowering Aβ in ex vivo experiments and in animal models of AD;
83-84

 despite consistent 

activity in lowering Aβ, many problems were discovered including poor bioavailability 

and weak activity; only 1% of the drug crosses the blood brain barrier, and in cell culture 

the EC50 for lowering Aβ level is higher than 100 µM.
85

 As for the setup of the clinical 

trial, the patients selected for the trial were patient that had already developed the 

symptoms of AD, however it was suggested previously that lowering Aβ levels in the 

brain as a treatment strategy should be initiated before the pathological manifestation of 

the disease. In fact some of the epidemiological studies revealed that a lag period of 2 

years is important for the protective activity of NSAIDs against AD.
86

 This requirement 

was demonstrated in vivo using a transgenic mouse model that genetically mimics the 

arrest of Aβ production with Aβ lowering agents; these mice, overexpressing mutant APP 

from a vector that can be regulated by doxycycline, produced high-level of APP and 

quickly induced amyloid plaques formation under normal conditions; Doxycycline 

administration inhibited transgenic APP expression by greater than 95% and reduced Aβ 

production. When doxycyclin was administered before plaques were formed it 

suppressed the amyloid pathology while long term doxycyclin administration after 
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plaques formation had little effect on amyloid pathology. The already formed amyloid 

plaques remained in the brain for more than a year, and the brain showed little sign of 

active amyloid clearance, and surprisingly, while Aβ production was inhibited as detected 

by the inhibition of APP expression, the levels of soluble Aβ remained relatively high, 

suggesting that the plaques dispersion requires longer than to assemble and that once 

these plaques are formed they act as an amyloid pool slowly shedding soluble Aβ. Many 

enzymes shown to degrade Aβ were shown to be ineffective in degrading aggregated 

forms of Aβ; this could be the explanation for the long-term presence of these amyloid 

plaques in doxycyclin treated mice. However due to the short life span of mice, the 

amyloid plaques were monitored up to one year, leaving a possibility that plaques might 

eventually disappear but not within one year.
87

 

As discussed previously, amyloid plaques are formed mainly of Aβ fibrils which are not 

most toxic form of Aβ. It is the Aβ-derived diffusible ligands (ADDLs) that are the most 

toxic form, so constant presence of plaques after the administration of flurizan or the use 

of NSAIDs without a lag phase might not be a direct cause for the failure of these anti-

AD therapies, but it‟s the constant shedding of soluble Aβ from these plaques, as 

described by jankowsky et al, that can be the cause. The prolonged lag period could be 

essential for giving the already formed senile plaques enough time to disintegrate and 

degenerate to a level that wouldn‟t be able to release enough Aβ to cause any damage. So 

Aβ lowering agents might be used for AD prevention rather than AD treatment and to be 

effective, the therapy might need to be initiated at the appropriate moment before the 
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onset of clinical symptoms. An effective biomarker or diagnostic tool might prove very 

efficient in the future for predicting this appropriate moment.
87

 

If clinical symptoms of AD have already started and lowering Aβ level is a long term 

process, an additional approach would be to support the neurons using a neuroprotective 

or anti-inflammatory drugs until an adequate level of Aβ is reached.
89

 It has been 

proposed previously, that if the onset of AD can be delayed by 5 years, the number of 

affected people in the United States will decrease by almost 50% by 2050, and even with 

a modest delay of one year, the prevalence will decrease by close to one million.
90
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Chapter 2 Design, synthesis, and biological characterization of BMAOIs containing 

 curcumin and cholesterol 

2.1 Introduction 

Alzheimer‟s disease (AD) is a devastating neurodegenerative disease and is the most 

common cause of dementia. The etiology of AD still remains elusive and multiple factors 

have been suggested to contribute to the development of AD, among which amyloid-β 

(Aβ) and oxidative stress have been well documented.
91,92

 Emerging evidence indicates 

that small Aβ oligomers (AβOs), rather than insoluble Aβ fibrils, are responsible for 

disruption of neuronal synaptic plasticity and the resulting early cognitive impairment 

associated with AD.
93

 Studies of brain samples from AD patients also confirmed the 

correlation of AβOs with the severity of dementia.
94-96

 Despite the fact that multiple 

assemblies of AβOs and a variety of underlying mechanisms have been suggested in the 

literature,
97-101

 one point of consensus remains clear: the requirement of AβOs. 

Collectively, these findings provide compelling support for developing Aβ 

oligomerization inhibitors as novel therapeutic agents for the treatment of AD. Increased 

oxidative damage by reactive oxygen species (ROS) and reactive nitrogen species is 

another feature consistently found in the brains of AD patients.
92, 102

 Many factors have 

been demonstrated to cooperatively contribute to the production of ROS in the AD brain 

such as biometals, mitochondria dysfunction and Aβ.
103

 Transgenic mouse studies have 

also showed a correlation of increased oxidative stress and Aβ accumulation.
104

 

     Recently, a wealth of data has implicated the roles of neuronal cell membrane/lipid 

rafts (CM/LR) in the oligomerization and toxicity of Aβ.
105,106

 Once associated with the 



www.manaraa.com

27 

 

membranes, Aβ exhibits an enhanced rate of aggregation that is dependent on pH, metal 

ion and ganglioside interactions.
107-109

 Recently, evidence has also indicated that lipid 

rafts, a cell membrane microdomain enriched in cholesterol and sphingolipids, can 

accelerate the cell membrane binding of Aβ and AβOs formation.
105-106

 On the other 

hand, destruction of lipid rafts affects Aβ membrane binding and protects cells from Aβ 

toxicity.
110

 Furthermore, Aβ precursor protein (APP), APP cleavage enzymes (β- and γ-

secretases), Aβ and AβOs have all been identified in lipid rafts, suggesting that lipid rafts 

may be a critical platform for Aβ production and oligomerization.
111

 In addition, 

oxidative stress has been shown to up-regulate presenilin-1, the critical component of γ -

secretase, in lipid rafts of neuronal cells to promote Aβ production.
112

 Altogether, it is 

apparent that CM/LR are important regulators in AD development and this relationship 

can be exploited to design and develop novel AD therapies. 

     Numerous chemical ligands have been developed as potential AD treatments by 

targeting Aβ and oxidative stress.
113, 114

 However, very few of them moved to clinical 

trials and none of them has been approved by FDA, which suggests that targeting a single 

risk factor is not an ideal strategy for developing treatments for this multifaceted disease. 

In contrast, new approaches that co-target multiple risk factors involved in AD are 

emerging as promising strategies for developing effective treatment agents for AD.
115-117

 

Herein, we hypothesized that a bivalent multifunctional Aβ oligomerization inhibitors 

(BMAOIs) strategy that targets AβOs, oxidative stress and CM/LR would be a novel 

approach to design strategically distinct ligands with the potential to overcome the limits 

posted by the traditional single-factor based approach. Conceptually, these BMAOIs 



www.manaraa.com

28 

 

contain a multifunctional AβO-inhibitor pharmacophore that accommodates additional 

antioxidant properties as well as a CM/LR anchor pharmacophore linked by a spacer 

(Figure 5). The use of bivalent strategies to explore protein-protein interactions has been 

particularly successful in opioid receptor research field.
118

 Recently, this concept has 

been extended to neurodegenerative diseases in developing acetylcholinesterase 

inhibitors and metal chelators.
115

 We envisaged that such BMAOIs would chaperone the 

multifunctional AβO-inhibitor moiety in close proximity to CM/LR in which AβOs and 

oxidative stress are produced to increase its accessibility to interfere with these multiple 

processes, thus improving its clinical efficacy (Figure 5). In this report, we rationally 

designed, synthesized and biologically characterized a series of BMAOIs and one 

compound was identified as a new hit for further investigation.  

 

Figure 5. BMAOIs strategy and design 
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2.2 Design and Chemistry: 

The desired BMAOIs must contain an AβO-inhibitor moiety with intrinsic antioxidant 

effects, as well as incorporate a residue able to efficiently interact with CM/LR, spanned 

by a stable linkage. Thus in our designed BMAOIs, curcumin (1) was selected as the 

multifunctional AβO-inhibitor pharmacophore and on the other end, connected by a 

spacer, cholesterol (2) was selected as the anchor pharmacophore to the CM/LR (Figure 

6). The selections of 1 and 2 were based on the following reasons: 1) 1 is an important 

phytochemical that has long been known for its antioxidant, anti-inflammatory properties 

as well as recently discovered anti-Aβ properties;
119-122

 2) it has been demonstrated that 2 

and other sterols linked with another moiety can anchor CM/LR in mammalian cells and 

function as a carrier to induce internalization via endocytosis.
123,124

 The crucial 

consideration in designing BMAOIs is to determine the loci on the two pharmacophores 

for attaching the spacer and the nature and length of the spacer. Given the fact that 

alkylation of the 3-OH of 2/sterol does not affect their binding affinities to CM/LR, 
123-124

 

we selected this position as spacer attachment position. On the other end, one of the 

phenolic oxygens and the C-4 position (methylene carbon between the two carbonyl 

groups) of 1 were selected to design two series of BMAOIs to investigate the optimal 

attachment. Since it is not clear whether Aβ oligomerization occurs on the surface or 

inside of CM/LR and optimal spacer length range cannot be predicted from existing 

literature, we varied spacer length as a key parameter for investigation. Since the cell 

membrane thickness is frequently cited as 3 nm (although ranging from 2.5 to 10 nm), we 

have decided to initially vary the spacer length from 11 to 21 atoms (Figure 6). Two 
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monovalent ligands (1 attached to spacer but not cholesterol) (15 and 16) were also 

designed to evaluate the influence of spacer attachment on 1‟s activity. Recently “click 

chemistry”
125

 methodology has been successfully applied to connect 1 to peptides by 

Ouberai et al.
126

 Therefore, to efficiently assemble the two pharmacophores together, we 

adopted this “click chemistry” methodology to include a 1,4-disubstituted triazole ring in 

the spacer. 

 

Figure 6. Chemical structures of 1, 2, designed BMAOIs and monovalent ligands. 
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The synthesis began with the preparation of alkyne intermediates 20 and 23 through well 

established Pabon reaction (Scheme 1).
127

 

Scheme 1. Synthesis of intermediates 20 and 23
a
 

 

Briefly, alkylation of vanillin 17 with propargyl bromide provided 18. Aldol reaction of 

17 with 2,4-pentane-dione followed by another Aldol reaction with 18 afforded 

intermediate 20. Alkylation of 2,4-pentane-dione with propargyl bromide in the presence 

of 1,8-Diazabicycloundec-7-ene (DBU) in benzene yielded 22 which on Aldol reaction 

with 17 afforded intermediate 23.  
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Scheme2. Synthesis of Intermediates 32-37
a
  

 

 As shown in Scheme 2, carboxylic acid 25 was synthesized following the reported 

procedure.
124

 Then, coupling reactions of 25 with various azidoamines 26-31 which were 

synthesized through coupling reactions of azidoalkylamines 26 and 27 with Boc 

protected β-alanine followed by Boc deprotection afforded azido intermediates 32-37. 
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Scheme3. Synthesis of designed BMAOIs and Monovalent Ligands
a
 

 

Once all the required intermediates were available, the click reactions of the alkynes 20 

or 23 with 32-37 were applied under sodium ascorbate and CuSO4 in THF/H2O 

conditions to obtain the designed BMAOIs 3-8 or 9-14, respectively (Scheme 3). All the 

designed BMAOIs are in keto-enol forms in chloroform judged by 
1
HNMR and 

13
CNMR. The synthesis of the monovalent compounds 15 or 16 is similar to the synthesis 

of BMAOIs. Click reactions of 20 or 23 with azido intermediate 38 which was 

synthesized from the reaction of butylamine with succinic anhydride followed by amide 

coupling with 6-azidohexylamine achieved the synthesis of 15 or 16, respectively. 
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2.3 Results and Discussion 

2.3.1 Inhibition of AβOs Production by Designed BMAOIs. 

The rational design of BMAOIs targeting CM/LR and AβOs as well as oxidative stress 

will require demonstration of anticipated effects in a biologically relevant system. The 

whole cell assay is a composite of not only Aβ oligomerization inhibition, but also 

permeability, stability, and other factors will validate the accessibility and function of our 

BMAOIs. MC65 is a human neuroblastoma cell line that conditionally expresses C99, the 

C-terminus fragment of APP using tetracycline (TC) as transgene suppressor.
128

Upon 

removal of TC, these cells can produce intracellular Aβ aggregates including small 

AβOs. Most importantly, the induced cytotoxicity in these cells by TC removal has been 

associated with the accumulation of AβOs.
129

Furthermore, oxidative stress has been 

indicated as one potential effector to impart neurotoxicity upon the accumulation of 

intracellular AβOs in this cells.
130

 Therefore, MC65 cells were initially employed to 

validate and test our BMAOIs using Western blot analysis. All BMAOIs were first 

evaluated at a single concentration of 10 μM. Candidate compounds with inhibitory 

activities at this concentration were further evaluated in a dose-dependent manner in the 

following assays. 
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Figure 7. Inhibition of AβOs formation by 14 in MC65 cells and ML60 cells. (A) 

MC65 cells were cultured under +TC or-TC conditions for varying intervals (0, 2, 

18, 27 h), and then cell lysates were analyzed by Western blot using 6E10 antibody. 

(B) MC65 cells were treated with indicated compounds (10 μM) for 24 h 

immediately after the removal of TC. Lysates from cultures were analyzed by 

Western blotting using 6E10 antibody. The image represents the results from one of 

three independent experiments. (C) ML60 cells were treated with test compounds 

(10 μM) for 24 h and extracellular AβOs in conditioned medium were analyzed by 

ELISA. Data were expressed as mean percentage of AβOs (n = 4) with parallel 

DMSO cultures set at 100%.  Errorbars represent standard error of mean (SEM). 

 As shown in Figure 7A, withdrawal of TC induced the production of AβOs consistent 

with reported results.
129

 1 did not exhibit inhibition on the formation of AβOs (Figure 

7B). Spacer attachment at both positions (15 and 16) did not change the activity of 1. 
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BMAOIs 3, 4 and 9, 10 (spacer length ranging from 11 to 13 atoms) showed no inhibition 

on the formation of small AβOs. BMAOIs 5-7 and 11-13 (spacer length ranging from 15 

to 19 atoms) slightly inhibited the formation of AβOs with specific suppression of the 24-

kDa bands. Notably, among the BMAOIs tested, 14 (with 21 atoms in the spacer) 

significantly inhibited AβOs production. Thismay indicate that spacer length is an 

important structural determinant for their inhibition on AβOs formation in MC65 cells 

with a 21-atom-spacer best supporting the design of BMAOIs tested here. Most 

importantly, it is notable that 8, with the same spacer length (21 atoms) as 14 but 

different spacer attaching position on 1, did not show inhibitory effects on AβOs 

formation, which suggests the importance of attachment position on 1 as well. Next, 

another cell line, ML60, was employed to evaluate the inhibition of AβOs production. 

ML60 cell line is a line of Chinese hamster ovary (CHO) cells stably expressing wild 

type APP and mutant presenilin 1 (M146L missense mutation) and can specifically 

produce high levels of extracellular AβOs.
131

 As shown in Figure 7C, only 14 inhibited 

the production of extracellular AβOs in ML60 cells, and surprisingly all the other 

compounds increased the production of AβOs at a tested concentration (10 μM). It has 

been demonstrated that AβOs are formed intracellularly and then excreted outside the 

cells.
132

 The results from ML60 cells may further reflect 14‟s ability to reduce 

intracellular AβOs, which is consistent with the results from MC65 cells. Altogether, 

these results suggest that spacer length and attachment position on 1 are important  

structural determinants for inhibitory activities on the formation of AβOs and BMAOIs 

with optimal spacer length can improve their potencies. In order to further confirm the 
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inhibition of smallAβOs by 14 in MC65 cells, an AβO-specific antibody A1143 

combined with Alexa Fluor 568 conjugated secondary antibodies was employed to detect 

the expression of AβOs in MC65 cells using immunocytochemistry techniques. 

 

Figure 8. Immunocytochemistry of 1 and 14 in MC65 cells. MC65 cells were treated 

with the indicated compounds (10 μM) immediately after the removal of TC. After 

24 h, the cells were fixed and immunofluorescently stained for AβOs (red), CM/LR 

(green), and nucleus (blue) and imaged with Leica TCS-SP2 AOBS confocal laser 

scanning microscope. White arrows indicate the red puncta of AβOs. The image 

represents one of five areas examined. 

 As shown in Figure 8, removal ofTCinduced rapid intracellular accumulation of AβOs 

(red fluorescence puncta). Consistent with Western blot results, 14 significantly inhibited 

the formation of AβOs in MC65 cells upon the removal of TC. Surprisingly, 1 slightly 



www.manaraa.com

38 

 

suppressed the formation of AβOs in this assay while it exhibited no inhibitory effects on 

the formation of AβOs in Western blot analysis. This might be due to the different 

antibodies used for detection in these two assays with A11 antibody more specific to 

AβOs. In addition to confirming Western blot data, these results also indicate that both 14 

and 1 can cross the cell membrane of MC65 cells. 

2.3.2 Interactions of 14 with AβOs and Cell Membrane of MC65 Cells. 

In order to confirm 14 can bind toAβOs, the inhibition of Aβ42 oligomerization was 

performed and assessed using Western blot analysis as described in the literature.
119

  

     

Figure 9. Binding interactions of 14 with Aβ42 and the CM/LR of MC65 cells. (A) 

TEM image of AβOs. (B) Aβ42 (5 μM) was incubated with or without compounds 

(20 μM), and then samples were analyzed by Western blot using 6E10 antibody. 

Lane 1 - Aβ42 without incubation; Lane 2 - Aβ42 with incubation; Lane 3 - Aβ42 

with 1; Lane 4 - Aβ42 with 14. (C) MC65 cells were treated and imaged as in Figure 

4. Left panel - differential interference contrast (DIC) images ofMC65 cells; central 
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panel - fluorescence of 14 and 1; right panel - overlay of left and central panels plus 

DAPI staining of nucleus. 

 As shown in Figure 9A, Aβ42 formed oligomers under the reported protocol as 

demonstrated by transmission electron microscopy (TEM) analysis. After incubation in 

Ham‟s F-12medium for 4 h at 37 
0
C, higher order species of AβOs were formed (Figure 

5B, lane 2). Notably, both 1 and 14 inhibited the oligomerization of Aβ42 (Figure 9B, 

lanes 3 and 4), which demonstrates their direct binding to Aβ42. This further confirms 

that the addition of spacer in 14 does not affect its binding interactions with Aβ42. Next, 

immunocytochemistry studies were conducted to confirm the interactions of 14 with the 

CM/LR taking advantage of the intrinsic fluorescence of 14. As shown in Figure 9C, 14 

was detected primarily on the cell membrane of MC65 cells (yellow puncta) and inside of 

MC65 cells as well (bottom panel). 1 was detected inside of MC65 cells but not on the 

cell membrane (middle panel). The results demonstrate that 14 can directly interact with 

CM/LR of MC65 cells and anchor the ligand primarily to the CM/LR. Given the fact that 

Aβ aggregates on the cell surface,17-19 the anchorage of 14 to CM/LR may increase its 

target accessibility and consequently increase its potency. Collectively, these results 

support our design rationale of using BMAOIs to cotarget AβOs and CM/LR. 

Protective Effects of 14 on AβOs-Induced Cytotoxicity in MC65 Cells and 

Differentiated Human Neuroblastoma SH-SY5Y Cells. 

The production of intracellular AβOs has been suggested to be the major factor leading to 

cytotoxicity in MC65 cells.
129

 Therefore, to test whether the suppression of AβOs 
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formation by 14 correlate with functional activities, 14 was further evaluated for its 

protective effects on MC65 cell viability upon removal of TC. 

 

 

 Figure10. Protective effects of 14. (A) MC65 cells were treated with 1 or 14 at 

indicated concentrations under +TC or -TC conditions for 72 h. Cell viability was 

assayed by MTS assay. Data were expressed as mean percentage viability (n = 6) 

with parallel +TC cultures set at 100% viability. Error bars represent SEM. (B) 

Alltrans- retinoic acid differentiated SH-SY5Y cells were treated with AβOs (1 μM) 

in the presence or absence of test compounds at indicated concentrations for 48 h. 

Cell viability was assayed byMTS assay. Data were expressed as mean percentage 

viability (n = 6) with cultures without AβOs set at 100% viability. Error bars 
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represent SEM. (C) Effects of 14 (10 μM) on anti-CD3 antibody mediated splenocyte 

proliferation. (D) Effects of 14 (10 μM) on IL-2 augmented NK cell activity in vitro. 

The experiments were performed as described in the Experimental Section. Data 

were presented as mean (n = 4) ( SEM. *P < 0.05 indicates significant differences 

from control group (without TC inA and withoutAβOs in B) analyzed by one way 

ANOVA. 

 As shown in Figure 10A, 1 and 14 exhibited no toxic effects at tested concentrations in 

the presence of TC. Upon removal of TC, MC65 cell viability was significantly 

decreased and 14 protected MC65 cell survival in a dose-dependent manner with nearly 

full rescue at 16 μM. 1 only exhibited minimal protective effects on MC65 cell viability 

consistent with reported results.
129

 8 and 12 exhibited no protective effects under these 

conditions (data not shown) which further suggests the importance of spacer length and 

attachment position on their activities. Together with the results from Western blot and 

immunocytochemistry assays, these data suggest that the localization of 14 to 

theCM/LRmay increase 14‟s target accessibility and produce a more profound inhibition 

of the formation of AβOs and elevate the survival of MC65 cells. To further verify 

whether 14 can protect cells from extracellular AβOsinduced cytotoxicity, all trans-

retinoic acid differentiated human SH-SY5Y cells were employed. As shown in Figure 

10B, freshly prepared AβOs (1 μM) from Aβ42 significantly decreased SH-SY5Y cell 

viability (~40% decrease). Notably, 14 completely restored the cell viability at all of the 

tested concentrations. On the other hand, 1 only exhibited moderate protective activities 

at 2, 4, and 8 μM concentrations but not at 16 μM. This may be due to its toxic effect on 
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SHSY5Y cells at this concentration since 1 has been reported to have cytotoxicity on SH-

SY5Y cells at higher concentrations. 
134

 These results suggest that 14 can protect cells 

from both intracellular and extracellular AβOs-induced cytotoxicity, while 1 only 

exhibits protective activity toward extracellular AβOs-induced cytotoxicity even though 

it cancross the cell membrane under these experimental conditions. This may further 

indicate that while both 1 and 14 can bind to AβOs, CM/LR anchorage of 14 can increase 

its accessibility to intracellular target AβOs. Since CM/LR are crucial for many aspects of 

cell signaling and functions, 14 was further evaluated for its potential cytotoxicity in 

mouse spleen and natural killer (NK) cells. 14 showed minimal cytotoxic effects in 

mouse spleen (Figure 10C) and no cytotoxic effects in NK cells (Figure 10D). This 

suggests that localization of BMAOIs to the CM/LR will not affect the normal cellular 

functions. Taken together, it is clear that 14 is more active than 1 in inhibiting the 

production of AβOs and in protecting cells from the in situ AβOs-induced cytotoxicity.  

2.3.3 Antioxidant Activity of 14 

One of the BMAOIs design goals is to reduce oxidative stress that potentially contributes 

to the development of AD. Furthermore, oxidative stress has been indicated as one 

potential effector to impart neurotoxicity upon the accumulation of intracellular AβOs in 

MC65 cells.
130

 Therefore, we decided to further evaluate the antioxidant activity of 14 in 

MC65 cells. Despite the availability of several chemical antioxidation assays, the ability 

to predict and correlate these chemical assays with in vivo activity is questionable. In 

contrast, a cellular antioxidation assay may provide a more biologically relevant system 

that best addresses the permeability, distribution, and metabolism issues to evaluate 
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potential antioxidant properties. Recently, a dichlorofluorescein diacetate (DCFH-DA) 

based cellular antioxidant assay has been established and widely used for this purpose.
135

 

We therefore adopted this DCFH-DA assay in MC65 cells to evaluate the antioxidant 

effects of 14 and 1.  

 

Figure 11. Antioxidant effects and Caco-2 permeability of 14. (A) MC65 cells were 

treated with 1 or 14 at indicated concentrations under +TC or -TC conditions for 24 

h, and then DCFH-DA (25 μM) was loaded and fluorescence intensity was analyzed 

at 485 nm (excitation) and 530nm (emission). Data were presented as mean 

percentage of fluorescence intensity (n=5) with parallel TCcultures set at 100%. 

Error bars represent SEM. (B) MC65 protection was performed as described in 

Figure 6A with NAC (8 mM) or trolox (32 μM) (n=5). (C) Caco-2 cells were plated 

on transwell filters. Test compounds (10 μM) were added to either the apical or 

basolateral side, and then samples were analyzed by HPLC to determine flux (A-B: 

apical-to-basolateral; B-A: basolateral-to-apical) at indicated time points. Data were 

presented as mean (n=3) ±SEM. *P<0.05 indicates significant differences from 

control group (-TC) analyzed by one-way ANOVA.  
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As shown in Figure 11A, upon TC removal, intracellular oxidative stress, as measured by 

fluorescence intensity, is significantly increased compared to normal growing MC65 cells 

in the presence of TC. Notably, both 14 and 1 suppressed the intracellular oxidative stress 

in a dose-depndent manner. These results may indicate that the curcumin moiety in 14 is 

responsible for its antioxidant activities. Although 1 exhibited antioxidant activities in 

this cellular model, it did not protect MC65 cell survival (Figure 10A). To compare 

whether other antioxidants can protect MC65 cells from AβOs-induced cytotoxicity, N-

acetylcysteine (NAC) and trolox (6-hydroxy-2,5,7,8-tetramethyl chroman-2-carboxylic 

acid), an analogue of vitamin E, were tested in MC65 cells. As shown in Figure 11B, 

trolox (32 μM) completely rescued MC65 cells from AβOs-induced cytotoxicity, while 

NAC (8 mM) rescued MC65 cells by 48% consistent with reported results.
130

 Given the 

fact that NAC is mainly a hydrogen peroxide scavenger while trolox, a chain-breaking 

antioxidant, is particularly effective against lipid peroxidation within the cell 

membrane,
136

 these results may indicate lipid peroxidation within the cell membrane as a 

major contributor underlying the mechanism of AβOs-induced cytotoxicity in MC65 

cells, which is consistent with the results from Woltjer et al.
137

 The discrepancy of 1 and 

the other two antioxidants in MC65 cell-protection may suggest that 1 either cannot reach 

the targets or only partially suppress lipid peroxidation in MC65 cells. Together with the 

results from Western blot analysis, immunocytochemistry, and cell protection, the results 

of antioxidation assay further suggest that 14 can retain the antioxidant property of 1 

while exhibiting superior capability to reach intracellular AβOs by interacting with the 

CM/LR, thus efficiently reducing the formation of AβOs and ultimately exhibiting better 
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overall protective activities in these cells when compared to 1. This further supports the 

idea that our BMAOIs strategy has the potential to provide clinically efficient 

multifunctional agents for treatment of AD. 

2.3.4 Assessment of Permeability and P-Glycoprotein Using Caco-2 Cell Model 

Because of the adverse effects of AD in the central nervous system, effective drug 

candidates need to cross the blood-brain barrier (BBB). To test whether 14 has the 

potential to reach the brain, we determined its permeability and transport directionality 

using the Caco-2 model.
138

 Although the Caco-2 cell monolayer model is derived from 

the colon rather than the brain, this model expresses efflux transporters such as P-

glycoprotein which are also expressed at the BBB. The Caco-2 model does not predict 

BBB penetration as well as other models, such as PAMPA-BLM, ECV/C6, or 

hCMEC/D3;
139-141

 however, this model can provide early screening regarding the 

transcellular diffusional permeability and directional efflux transport across the 

BBB.52 As shown in Figure 11C, the apical-to-basolateral and basolateral-to-apical 

permeabilities of 14 were 7.1 (4.6×10-6 and 4.7 (0.5±10-6 cm/s, respectively. Thus, 14 

exhibits good bidirectional permeability in Caco-2 cells. In contrast, we were unable to 

detect transport of 1, likely due to its extensive metabolism by glutathione-S-transferase 

enzymes. 
143

 This further indicates that CM/LR anchorage of 14can improve its metabolic 

stability compared to 1. The permeability directional ratio (efflux ratio) for 14 is 0.63, so 

it does not appear to be a substrate for BBB efflux transporters such as P-glycoprotein, 

since the efflux ratio is <2.54. These data further support the potential of 14 as a new lead 
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to develop effective AD treatment agents. Furthermore, in vivo studies have 

demonstrated the ability of 1 to cross the BBB, 
119, 145, 146 

so 14 is anticipated to be able to 

cross the BBB and the results from Caco-2 assay also supports this notion. Future in vivo 

studies will assess the BBB permeability more directly, and studies are being undertaken 

in our laboratory to evaluate 14‟s BBB permeability in mice. 

2.3.5 14 crosses the blood-brain barrier (BBB) in B6C3F1 mouse and stains Aβ 

plaques in TgCRND8 mouse brain section.  

Though assays using caco-2 cell model has demonstrated the ability of 14 to cross BBB, 

we believe in vivo animal studies will provide more meaningful and ultimate evidence 

for BBB penetration. Therefore, we further determined the ability of 14 to cross the BBB 

and reach the brain using B6C3F1 mice.  

 

Figure 12. 14 crosses the blood-brain barrier (BBB) in B6C3F1 mouse and stains Aβ 

plaques in TgCRND8 mouse brain section. 

As shown in Figure 12A, 14 was detected by HPLC (high-performance liquid 

chromatography) using reverse phase C18 column in the brain tissues of B6C3F1 mice 
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(n=4) 60 min after intravenous (i.v.) injection of 14 (10 mg/kg), which clearly indicates 

the ability of 14 to cross BBB. In order to further confirm 14 can bind to Aβ plaques, the 

cortex sections from transgenic TgCRND8 mice, a transgenic mouse model widely used 

for AD research, were used next to study the Aβ plaque binding capacity of 14 by taking 

advantage of the intrinsic fluorescence of 14. As shown in Figure 12B, plaques in the 

cortex section of TgCRND8 mice were brightly labeled by 14, consistent with the 

identified Aβ plaques by anti-ADDL antibody labeling in an adjacent section. This 

clearly indicates that 14 can bind to Aβ plaques nicely. Collectively, these results 

strongly suggest 14‟s potential as multifunctional ligand for further in vivo studies. 

2.4 Conclusion: 

In summary, a series of BMAOIs containing 1 and 2 were designed and synthesized to 

cotarget AβOs, oxidative stress, and CM/LR. Biological characterization from in vitro 

assays established that spacer length and the spacer attachment position on 1 are 

important structural determinants determinants for their biological activities. Among the 

designed BMAOIs, 14 with a 21-atom-spacer was identified to localize to the CM/LR of 

MC65 cells, to efficiently inhibit the production of intracellular AβOs inMC65 cells, and 

to protectMC65 cells and differentiated SH-SY5Y cells from the cytotoxicity of AβOs. 

Furthermore, 14 exhibited antioxidant properties and demonstrated potential to cross the 

BBB using a Caco-2 model. These results strongly encourage further optimization of 14 

as a new hit to develop more potent BMAOIs. These results may also help validate 

BMAOIs strategy as a novel design strategy to provide effective multifunctional ligands 

as potential AD treatment agents. 
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Chapter 3 Design, synthesis and biological characterization of BMAOIs containing 

 cholesterylamine and curcumin: 

3.1 Design and objectives: 

In Chapter 2, a series of BMAOIs containing curcumin and cholesterol was designed, 

chemically synthesized and biologically assayed to reach the proof-of-concept of our 

BMAOI strategy. The results demonstrated that BMAOIs with optimal spacer length and 

connectivity localize to the CM/LR, efficiently suppress the production of intracellular 

AβOs, protect MC65 cells as well as retain the antioxidant and metal complexation 

activities. Furthermore, the lead BMAOI can cross the BBB and bind to the Aβ plaques. 

In order to further validate the BMAOI strategy and develop new and more potent 

BMAOIs as lead structures, a new series of BMAOIs containing cholesterylamine as the 

CM/LR anchorage moiety and curcumin as the multifunctional moiety were designed, 

synthesized and characterized in this chapter. The reason we chose cholesterylamine to 

replace the cholesterol is as the following: 1) It has been reported that N-alkyl derivatives 

of cholesterylamine can also effectively anchor CM/LR in mammalian cells and function 

as carrier via endocytosis with improved activity than cholesterol.
142-145

 This might be 

due to the H-bond interactions with CM/LR components through the –NH- moiety of 

cholesterylamine. 2) Replacement of cholesterol with cholesterylamine may reduce the 

concern of introducing additional cholesterol into the body as higher cholestrerol level 

has been suggested to facilitate the development of AD even though the roles of 

cholesterol are still under debate.  
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Figure 13. Nitrogen series BMAOIs. 

 As shown in Figure 13, a new series of BMAOIs with the spacer length varying from 15 

to 23 atoms were designed to further validate the BMAOI strategy. The objectives of 

desiging this series of BMAOIs are to investigate 1) whether NH is preferred over O in 

the interaction with CM/LR; 2) whether spacer connectivity on 1 are still critical in this 
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series of BMAOIs; and 3) whether the optimal spacer length to produce desired activity 

will still be within similar range as our first generation BMAOIs. 

3.2 Chemistry: 

Synthesis of nitrogen series started with synthesis of curcumin analogs 20 and 23 as 

described previously. Azido intermediates were synthesized starting from cholesterol. 

Cholesterol was esterified using methane sulfonyl chloride to intermediate 39, which was 

converted to 3β-Azido-5-cholestene 40. 40 was reduced to 3β-Amino 5-cholestene 41 

using lithium aluminum anhydride. 42 or 43 was synthesized from 41 using N-

bromoalkyl-phthalimide and boc anhydride. 42/43 was deprotected using hydrazine to 

afford 44/45. 44/45 was coupled with diglycolic anhydride to get 46/47. Azido 

intermediates 52-55 were synthesized through coupling of 46/47 and azido amines 48-50.  

BMAOIs 57-64 with spacer length 17-23 were obtained through click chemistry reaction 

between alkyne intermediates 20/23 and azido intermediates 52-55 followed by Boc 

deprotection reaction. To synthesize BMAOIs with 15 spacer length, 44 was coupled 

with 6-azido hexanoic acid (51) to get azido intermediate 56 which was clicked with 

alkyne intermediate 20 and 23 followed by Boc deprotection to afford 65, 66 

respectively. 
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Scheme4. Synthesis of intermediates 52-56
a 
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Scheme5. Synthesis of BMAOs 57-64
a 
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Scheme 6. Synthesis of BMAOIs 65-66
a 
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3.3 Results and discussion: 

3.3.1 Neuroprotection by nitrogen series BMAOIs. 

As discussed earlier, MC65 is a human neuroblastoma cell line that conditionally 

expresses C99, the C-terminus fragment of APP using tetracycline (TC) as transgene 

suppressor
128

. In absence of TC these cells produce intracellular Aβ aggregates. It has 

been proved that TC removal can be cytotoxic because of intracellular accumulation of 

AβOs
129

. In addition, intracellular AβOs can cause oxidative stress which leads to 

neurotoxicity. Therefore, for nitrogen series BMAOIs again MC65 cells were employed 

for their validation and testing. This time we started our biological characterization using 

cell viability assay. To check functional activities of nitrogen series BMAOIs, they were 

evaluated for its protective effects on MC65 cell viability upon removal of TC. MC65 

cells were treated with BMAOIs at indicated concentrations using opti MEM as media. 

For positive control, Cells grown in regular growing media containing TC were selected 

as positive control. Opti MEM without TC was used as media to have a negative control. 

Cells were incubated for 72 h. Cell viability was measured by MTT assay. Data were 

expressed as mean percentage viability (n=6) with parallel +TC cultures set at 100% 

viability. As shown in figure 14, when MC65 cells were grown in Opti MEM without 

TC, it showed significant amount of toxicity and cell viability was significantly 

decreased. However, when cells were treated with nitrogen series BMAOIs using Opti 

MEM as media, they showed significant amount of cell survival compare to curcumin. 

Among BMAOIs, extent of neuroprotection by compounds 17M, 17P, 19M, 19P, and 

23M was quite similar. Compounds 21M and 23P exhibited more neuroprotection 
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compare to other compounds. Compound 21P was found to be the most potent 

neuroprotective compound in nitrogen series BMAOIs. From this result we came to 

conclusion that for both series of BMAOIs most active comound is one with 21 atom 

linker. However, they differ in position of linker attachment at curcumin analong. These 

data suggest effectiveness of nitrogen series BMAOIs, particularly ligand 21P, on 

inhibition of the formation of AβOs and elevation of the survival of MC65 cells. 

 

Figure 14. Protective effect of nitrogen series BMAOIs. MC65 cells were treated 

with indicated compounds (10 uM) under +TC or -TC conditions for 72 h. Cell 

viability was assayed by MTT assay. Data were expressed as mean percentage 

viability (n = 6) with parallel +TC cultures set at 100% viability. Error bars 

represent SEM. 

3.3.2 Inhibition of AβOs Production by Designed BMAOI 

Compound 59 (21P) was found to be most potent compound from cell viability assay on 

MC65 human neuroblastoma cell line. After getting most potent compound, we further 

tested it for Aβ oligomerization inhibition. We carried out western blot analysis on MC65 
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cell lines to check for Aβ oligomerization inhibition. 21P was evaluated on dose 

dependent manner. As shown in figure14, it was tested for indicated dose. 21P exhibited 

dose dependent inhibition on small AβOs. As shown in figure, at dose of 10 uM and 3 

uM 21P singnificantly inhibits small AβOs (two bands between 7 KD and 15 KD). At 

same doses 21P totally inhibits band around 24 KD. However, figure clearly shows 

inhibiton of AβOs reduces at lower doses as shown by results for 21P at 1 uM and 0.3 

uM. Thus, 21P at proper doses can inhibit Aβ oligomerization. These results further 

signifie importance of attachment position on curcumin and spacer length. 

 

Figure 15. Inhibition of AβOs formation by compound 59 (21P). MC65 cells were 

treated with 59(21P) (10 uM, 3 uM, 1 uM, 0.3 uM) for 24 h immediately after the 

removal of TC. Lysates from cultures were analyzed by Western blotting using 

6E10 antibody.  
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3.3.3 Antioxidant activity 

As discussed earlier, one of the BMAOIs design goals is to reduce oxidative stress that 

potentially contributes to the development of AD. Furthermore, oxidative stress has been 

indicated as one potential effector to impart neurotoxicity upon the accumulation of 

intracellular AβOs in MC65 cells. Therefore, we decided to further evaluate the 

antioxidant activity of 21P in MC65 cells. Despite the availability of several chemical 

antioxidation assays, the ability to predict and correlate these chemical assays with in 

vivo activity is questionable. In contrast, a cellular antioxidation assay may provide a 

more biologically relevant system that best addresses the permeability, distribution, and 

metabolism issues to evaluate potential antioxidant properties. Again,  

A dichlorofluorescein diacetate (DCFH-DA) based cellular antioxidant assay was chosen 

to evaluate the antioxidant effects of 21P in MC65 cells. As shown in figure 16, 

intracellular oxidative stress is significantly increased upon TC removal as shown by high 

fluorescence intensity signal. MC65 cells were treated with compounds at indicated 

concentrations using OPTI MEM as media for 24 h, and then DCFH-DA (25 uM) was 

loaded and fluorescence intensity was analyzed at 485 nm (excitation) and 530 nm 

(emission). Data were presented as mean percentage of fluorescence intensity (n=5) with 

parallel + TC cultures set at 100%. Regular growing media with TC was used as positive 

control and OPTI MEM with no TC was used as negative control. Figure 16 shows 

suppression of oxidative stress by curcumin in dose dependent manner. 59 (21P) did not 

show oxidative stress suppression in dose dependent manner. However, its antioxidant 

was quite similar with curcumin. Notably, both 21P and 1 suppressed the intracellular 
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oxidative stress. Again, from this result it is clear that the curcumin is responsible for 

antioxidant effect of 21P. Together with the results from neuroprotection assay, 

westerblot assay and antioxidant assay we can conclude that 21P can retain antioxidant 

effect of 1 while exhibiting superior capability to inhibit intracellular AβOs compare to 

curcumin. 

 

 

Figure 16. Antioxidant effect of 59 (21P). MC65 cells were treated with 1 and 21P at 

indicated concentrations (4 uM, 8 uM and 16 uM) for 24 h, and then DCFH-DA (25 

μM) was loaded and fluorescence intensity was analyzed at 485 nm (excitation) and 

530nm (emission). Data were presented as mean percentage of fluorescence intensity 

(n=5) with parallel +TCcultures set at 100%. Error bars represent SEM. 

3.3.4 Biometal complexation 

Metals such as copper, zinc and iron play very critical role in AD by inducing amyloid 

aggregation or oxidative neurotoxicity. AD brain has these metals in mM concentrations. 

These metals can bind to Aβ and induce its aggregation. They can also play a role in 
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generation of reactive oxygen species. Copper and iron can lead to neurotoxic redox 

reaction of Aβ and can induce oxidative cross-linking of the peptide into stable oligomers 

as well. Clioquinol and desferrioxamine are well known chelators. They chelate copper 

and zinc on Aβ and thus slow down Aβ aggregation by dissociation of Aβ –metal 

complex. Apart from dissolution of Aβ aggregates, clioquinol and desferrioxamine can 

also block cross-linked, covalently bonded Aβ oligomer formation and inhibits Aβ redox 

toxicity as well. Curcumin is a polyphenolic diketone which has anti-oxidant, anti-

inflammatory, and metal chelation property. Like clioquinol and desferrioxamine, 

curcumin can easily chelate redox active metals like iron and copper on Aβ compare to 

redox inactive zinc. Thus, curcumin can also prevent Aβ aggregation and toxicity.  

Therefore, our BMAOIs with curcumin as one the pharmacophore can act as metal 

chelator and can prevent neurons against Aβ mediated toxicity. 
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Figure 17. Absorption spectra of 21P or 21M (50 uM) and 21P or 21M (50 uM) 

mixed with divalent metal cations (60 uM). In case of only drug 188uL of compound 

solution and 12uL of H2O were added while for compound and metal 188uL of 

compound solution and 12uL of metal working solution were mixed together. For 

metal control 188uL of H2O and 12uL of metal working solution were mixed. 

Curcumin can absorb light most strongly at ~430 nm. Binding of curcumin with metal 

ions shifts absorbance maximum
147

. Our BMAOIs contain curcumin as an active moiety. 

Therefore it should also show maximum absorbance ~430 nm. When metal ion binds to 
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our BMAOIs, then there should be also change in optical spectra. From figure 17A it is 

clear that there is no difference in absorption spectra of 21M only and 21M with metal 

ion. Therefore we can say that 21M does not chelate metal ions.  21P can bind itself to 

bivalent iron and copper as shown by difference in absorption maximum of  compound 

and compound with added metal ion (figure 17 C and 17D). However, 21P did not show 

significant binding with zinc ion. No shift in absorption maximum when mixed with zinc 

ion. (figure 17B). All together, we can say that 21P retains metal chelation and thus Aβ   

oligomerization inhibiton property of curcumin. From this assay it is clear that spacer 

length as well as its positon of attachment on curcumin analog is important for its metal 

chelation property. 

3.4 Conclusions: 

 Based on MC65 cell viability assay and westernblot assay, compound 21P with 21 atom 

linker and linker attachment at phenolic oxygen on curcumin, was found to be most 

potent inhibitor of AβOs compare to other BMAOIs as well as curcumin. Further, it 

retains antioxidant activity as well as metal chelation property of curcumin. Thus, results 

demonstrated that the same spacer length but different connectivity are preferred in this 

new series of BMAOIs for neuroprotective activity as that of the lead compound from 

cholesterol series. Putting all results together, the design and characterization of the new 

series BMAOIs further confirmed the rationale of BMAOI strategy and their potential to 

lead to a new direction in development of effective AD-modifying and treatment agents. 
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Chapter 4Experimental section: 

4.1 Chemistry 

4.1.1 3-methoxy-4-(prop-2-ynyloxy)benzaldehyde (18) 

 

Route 1: Vanillin (760 mg, 4.9 mmol, 1 equivalent), potassium carbonate (960 mg, 6.9 

mmol, 1.4 equivalent) and propargyl bromide (1.19 g, 9.9 mmol, 2 equivalent) were 

added to dimethyl formamide (30 mL). The mixture was refluxed for 1h at 80 
0
C. 

Reaction was cooled to 0
0
C in ice bath and filtered under vacuum using celite. Reaction 

was quenched with 1M HCL (10 mL) and extracted with ethyl acetate. Organic phase 

was washed with water and dried it over sodium sulfate. Solvent was removed under 

vacuum and crude was purified using silica gel column using hexane: ethyl acetate (8:2 

v/v), which gave 3-methoxy-4-(prop (740 mg, 80%) as white solid. 

Route 2 (Mitsunobu reaction): Vanillin (4 g, 26.3 mmol, 1 equivalent), propargyl 

alcohol (1.61 mL, 26.3 mmol, 1 equivalent) and tri-phenyl phosphine (7.59 g, 28.9 mmol, 

1.1 equivalent) were dissolved in tetra hydro furan (50 mL). To that, added diethyl 

azodicarboxylate (DEAD) (5.04 g, 28.92 mmol, 1.1 equivalent) at 0
o
C. Reaction was 

stirred over night at room temperature. After completion of reaction as evidence by TLC 
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crude was purified on silica gel column with hexane:ethyl aceate (8:2 v/v) solvent system 

as eluent to get 3-methoxy-4-(prop-2-ynyloxy)benzaldehyde (4.2 g, 84%) as white solid. 

1
H NMR 400 mHz (CDCl3) δ 2.57 (t,1H), 3.94 (s, 3H), 4.85-4.86 (d, J = 2.44 Hz, 2H), 

7.13-7.15 (d, J = 8.16 Hz, 1H), 7.43-7.47 (m, 2H), 9.87 (s, 1H) 

13
C NMR 100 mHz (CDCl3) δ 56.06, 56.65, 109.58, 112.71, 126.21, 131.00, 150.11, 

152.17, 190.85 

4.1.2(1E,4Z)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)hexa-1,4-dien-3-one (19) 

 

2,4-pentendione (820 mL, 8 mmol, 1 equivalent) and boron oxide (500 mg, 7.2 mmol, 0.9 

equivalent) were dissolved in ethyl acetate (5 mL). The mixture was stirred at 80
o
C for 30 

min. Ethyl acetate (10 mL) solution of vanillin (555 mg, 3.6 mmol, 0.45 equivalent) and 

tributyl borate (0.97 mL, 3.6 mmol, 0.45 equivalent) was added to reaction mixture. After 

stirring for 30
 
min at 80

o
C, n-butylamine (0.36 mL, 3.6 mmol, 0.45 equivalent) was 

added drop wise to the mixture, which was allowed to stir at 100
o
C for 1h. Reaction was 

treated with 1N HCL (10 mL) at 50
o
C for 30 min. Extraction was done with ethyl acetate 

followed by washing of organic layer with water which was dried over sodium sulfate. 

Purification of crude product was done with silica gel column using hexane:ethyl acetate 

(8:2 v/v) solvent system  to obtain (1E,4Z)-5-hydroxy-1-(4-hydroxy-3-

methoxyphenyl)hexa-1,4-dien-3-one (2) (505 mg, 60%) as yellow solid. 
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1
H NMR 400 mHz (CDCl3) δ 2.14 (s,3H), 3.92 (s, 3H), 5.62 (s, 1H), 6.29-6.33 (d, J = 

15.76 Hz, 1H), 6.90-6.92 (d, J = 8.2 Hz, 1H), 7.00 (s, 1H), 7.06-7.08 (d, J = 6.36 Hz, 1H), 

7.50-7.54 (d, J = 15.4 Hz, 1H), 

13
C NMR 100 mHz (CDCl3) δ 26.78, 55.96, 56.50, 100.67, 109.59, 114.87, 120.35, 

122.65, 127.68, 140.09, 146.86, 147.79, 178.05, 196.91 

4.1.3 (1E,4Z,6E)-5-hydroxy-7-(3-hydroxy-4(prop-2-ynyloxy)phenyl)-1-(3-hydroxy-4-

methoxy phenyl)hepta-1,4,6-trien-3-one (20): 

 

Compound 20 (410 mg, 1.7 mmol, 1 equivalent) and boron oxide (180 mg, 2.51 mmol, 

1.48 equivalent) were dissolved in ethyl acetate (5mL) at 80
o
C. To this, added ethyl 

acetate (5 mL) solution of compound 19 (195 mg, 1.03 mmol, 0.6 equivalent) and tri 

butyl borate (0.7 mL, 2.51 mmol, 1.48 equivalent). After Stirring reaction mixture for 30 

min, it was treated with piperidine (0.07 mL, 0.60 mmol, 0.354 equivalent) at 80
o
C for 30 

min and then with 0.4 N HCL (5 mL) at 50
o
C for another 30 min. Finally reaction 

mixture was extracted with ethyl acetate, washed with water, dried over sodium sulfate 

and concentrated in vacuo. Purification of crude was done with silica gel column using 

hexane:ethyl acetate (8.5:1.5 v/v) solvent system to afford (1E,4Z,6E)-5-hydroxy-7-(3-

hydroxy-4(prop-2-ynyloxy)phenyl)-1-(3-hydroxy-4-methoxy phenyl)hepta-1,4,6-trien-3-

one (3) (105 mg, 32%) as orange solid. 
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1
H NMR 400 mHz (CDCl3) δ 2.53-2.54 (t, J = 4.84, 3H), 3.92-3.93 (d, J = 6.2 Hz, 6H), 

4.79-4.80 ( d, J = 2.32 Hz, 2H), 5.81 (s, 1H), 6.45-6.51 (m, 2H), 6.91-6.93 (d, J = 8.2 Hz, 

1H), 7.04 (s, 2H), 7.08-7.12 (m, 3H), 7.57-7.61 (d, J = 15.72 Hz, 2H), 

13
C NMR 100 mHz (CDCl3) δ 26.78, 55.97, 56.67, 60.41, 101.28, 109.70-129.31, 

140.08-149.83, 182.83, 183.68 

4.1.4 3-(prop-2-ynyl)-pentane-2, 4-dione (22): 

 

Propargyl bromide (320 mg, 2.7 mmol, 1 equivalent), potassium carbonate (225 mg, 16.2 

mmol, 6 equivalent) and 2, 4-pentanedione (1.38 mL, 13.5 mmol, 5 equivalent) were 

mixed together in acetone (15 mL). The mixture was stirred for 24 hr at 60
o
C. After 

completion of reaction, vacuum distillation was carried out to obtain pure 3-(prop-2-

ynyl)-pentane-2, 4-dione (4) (300 mg, 80%) as colorless liquid. 

1
H NMR 400 mHz (CDCl3) δ 2.03-2.04 (t, J = 5.28 Hz, 1H), 2.22 (s, 3H), 2.25 (s, 3H), 

2.68-2.71 (m, 2H), 3.84-3.87 (t, J = 15.08 Hz, 1H) 

13
C NMR 100 mHz (CDCl3) δ 14.45, 29.33, 29.41, 68.70, 70.79, 86.13, 202.18, 202.63 

 

 



www.manaraa.com

66 

 

4.1.5 (1E, 4Z, 6E)-5-hydroxy-1, 7-bis (3-hydroxy-4-methoxyphenyl)-4-(prop-2-ynyl) 

hepta-1, 4, 6-trien-3-one (23): 

 

3-(prop-2-ynyl)-pentane-2, 4-dione (4) (810 mg, 5.9 mmol, 1 equivalent) and boron oxide 

(285 mg, 4.1 mmol, 0.7 equivalent) were dissolved in anhydrous ethyl acetate (10 mL). 

The resulting mixture was stirred for 30 min at 40
0
C. To this, added vanillin (180 mg, 

11.8 mmol, 2 equivalent) and tri-butyl borate (6.3 mL, 23.6 mmol, 4 equivalent) followed 

by another 30 min stirring. N-butyl amine (0.85 mL, 8.8 mmol, 1.5 equivalent) was 

diluted with anhydrous ethyl acetate (10 mL) and added to reaction mixture over a period 

of 50 min. The mixture was heated to 40
o
C. After 24 hr 1 N HCL (10 mL) was added, 

heated to 65
o
C and stirred for 1 hr. The aqueous phase was extracted with ethyl acetate, 

dried it over sodium sulfate and concentrated in vacuo. The pure (1E, 4Z, 6E)-5-hydroxy-

1, 7-bis (3-hydroxy-4-methoxyphenyl)-4-(prop-2-ynyl) hepta-1, 4, 6-trien-3-one (5) (500 

mg, 21 %) was obtain as orange solid after running silica gel column using hexane:ethyl 

acetate (8.5:1.5 v/v) solvent system as eluent. 

1
H NMR 400 mHz (CDCl3) δ 2.14-2.16 (t, J = 5.08 Hz, 1H), 2.89-2.92 (m, 2H), 3.91 (s, 

3H), 3.95 (s, 3H), 6.68-6.72 (d, J = 15.8 Hz, 1H), 6.90-7.26 (m, 8H), 7.56-7.74 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 16.27, 56.03, 69.61, 70.57, 82.66, 106.24, 109.83-127.97, 

142.43-148.87, 182.68, 193.34 
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4.1.6(3S,10R,13R,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-

yl methanesulfonate (39) 

 

 

To a solution of cholesterol (20 g, 51.8 mmol, 1 equivalent) in anhydrous DCM (300 mL) 

at 4
o
C was added triethylamine (10.8 mL, 77.6 mmol, 1.5 equivalent), followed by drop a 

drop wise addition of solution of methanesulfonyl chloride (4.26 mL, 54.4 mmol, 1.05 

equivalent) in anhydrous DCM (20 mL). The reaction was stirred at 4
o
C for 30 min, 

followed by 24 hr stirring at room temperature. After completion of reaction, it was 

concentrated in vacuo. The resulting residue was dissolved in DCM (20 mL) and the 

product was recrystallized by addition of methanol. Vacuum filtration afforded Cholest-

5en-3β-ol, methanesulfonate (6) (22 g, 91%) as white solid. 

1
H NMR 400 mHz (CDCl3) δ 0.67 (s,3H), 0.85-0.87 (dd, 6H), 0.90-0.91 (d, 3H), 0.99-

2.52 (31H), 3.0 (s, 3H), 4.47-4.55 (m, 3H), 5.41-5.42 (t, 1H) 

13
C NMR 100 mHz (CDCl3) δ 10.96-42.41 (21C), 54.88, 55.64, 55.80, 81.03, 122.80, 

137.67 
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The flask was charged with cholest-5en-3β-ol, methanesulfonate (39) (11.77 g, 25.3 

mmol, 1 equivalent), azidotrimethylsilane (3.71 mL, 27.7 mmol, 1.1 equivalent), boron 

trifluoride etherate (6.3 mL, 50.6 mmol, 2 equivalent) and anhydrous DCM (200 mL). 

The reaction mixture was stirred over night at room temperature. After completion of 

reaction as evidence by TLC (eluent:hexane) the reaction was slowly poured into aqueous 

NaOH (2.0 M, 100 mL) and stirred for 5 min. The aqueous layer was extracted with 

DCM. The organic layer was washed with brine, dried over sodium sulfate and 

concentrated in vacuo to obtain light yellow crude product. Silica gel column was run to 

get 3β-Azido-5-cholestene (7) (8.9 g, 85%) as white solid. 

1
H NMR 400 mHz (CDCl3) δ 0.67 (s,3H), 0.85-0.87 (dd, 6H), 0.90-0.91 (d, 3H), 0.99-

2.03 (29H), 2.28-2.29 (d, 2H), 3.16-3.24 (m, 3H), 5.37-5.39 (t, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.85-42.32 (21C), 50.13, 56.18, 56.73, 61.18, 122.53, 

139.86 
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Solution of lithium aluminium hydride (1g, 26.3 mmol, 1.2 equivalent) in anhydrous 

diethyl ether (100 mL) was prepared and kept at 0
o
C. To this, solution of 3β-Azido-5-

cholestene (7) (8.85g, 21.5 mmol, 1 equivalent) in anhydrous diethyl ether (100 mL) was 

added and stirred for 30 min at 4
o
C, followed by 2 h stirring  at room temperature. After 

completion of reaction as evidence by TLC (eluent:hexane), the reaction was cooled to 

4
o
C and very carefully quenched by 10% NaOH until evolution of hydrogen gas ceased. 

Reaction mixture was extracted with ethyl acetate, washed with brine, dried over sodium 

sulfate and concentrated in vacuo. The resulting solid was dissolved in chloroform and 

residual inorganic salts were removed by vacuum filtration.  Concentration of filtrate 

gave 3β-Amino-5-cholestene (8) (7.1 g, 86%) as white solid. 

1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 0.99-

2.17 (31H), 2.57-2.61 (m, 1H), 5.30 (t, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.86-43.37 (21C), 50.27, 52.01, 56.17, 56.82, 120.62, 

141.87 
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`4.1.9 2-(6-bromohexyl)phthalimide: 

 

To a solution of 1,6-Dibromo hexane (5 g, 20.49 mmol, 1.5 equivalent) in DMF (30 mL) 

was added potassium carbonate ( 3.78 g, 27.32 mmol, 2 equivalent). The mixture was 

stirred for 10 min at room temperature. To this mixture, added solution of phthalimide (2 

g, 13.66 mmol, 1 equivalent) in DMF (20 mL). The reaction was stirred for 90 min at 

room temperature. After completion of reaction cold water was added to reaction mixture 

and aqueous layer was extracted with DCM. The extract was concentrated in vacuo. 

Column chromatography with silica gel column using hexane:ethyl acetate (8.5:1.5 v/v) 

as eluent afforded 2-(6-bromo hexyl)isoindoline-1,3-dione (2.9 g, 68 %) as white solid. 
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4.1.10 42, 43 

 

3β-Amino-5-cholestene (41) (1 equivalent), N-(4-bromobutyl)phthalimide/N-(6-

bromohexyl)phthalimide (1.1 equivalent) and potassium carbonate (2 equivalent) were 

added to DMF. The reaction mixture was stirred for 24 h at 60
o
C, cooled to room 

temperature and concentrated in vacuo. To the resulting solid was added DCM and 

insoluble residue was removed by vacuum filtration, followed by washing of residue with 

additional DCM. The combined filtrate and wash solution were rotavapored. The 

resulting residue, di-tert-butyl dicarbonate (1.5 equivalent) and diisopropyl ethyl amine (3 

equivalent) were added to anhydrous DCM. The reaction mixture were stirred for 4 h at 

room temperature and concentrated in vacuo. The crude was purified by silicagel column 

using hexane:ethyl acetate (9:1 v/v) as eluent to afford 10,11 ( 60-65%) as white solid. 

42:
 1

H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.05 (35H), 2.43 (br, 1H), 3.06 (br, 2H), 3.66-3.69 (t, 2H), 5.31-5.32 (t, 1H), 7.69-

7.71 (m, 2H), 7.83-7.85 (m, 2H) 
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4.1.11 44, 45: 

               

Anhydrous hydrazine (5.2 equivalent) was added to a solution of 42/43 (1 equivalent) in 

absolute ethanol. The resulting solution was stirred for 5 h at 50
o
C. After completion of 

reaction as evidence by TLC (hexane/ethyl, acetate 8:2) it was cooled to room 

temperature. White precipitate was removed by filtration and filtrate was concentrated in 

vacuo. To the resulting solid was added chloroform and insoluble residue was removed 

by vacuum filtration. Concentration of filtrate resulted in phthalimide deprotected 

primary amine (85-90%). 

44: 
1
H NMR 400 mHz (CDCl3) δ 0.60 (s, 3H), 0.79-0.80 (dd, 6H), 0.85 (d, 3H), 0.93-

1.91 (44H), 2.4 (br, 1H), 2.67 (t, 2H), 3.04 (br, 2H), 5.31-5.32 (t, 1H) 

45: 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

1.00-2.17 (48H), 2.49 (br, 1H), 2.68-2.72 (t, 2H), 3.08 (br, 2H), 5.32-5.33 (t, 1H) 
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4.1.12 46, 47: 

 

Flask was charged with 44, 45 (1 equivalent), diglycolic anhydride (2 equivalent), tri-

ethyl amine (0.5 equivalent) and DCM. The reaction mixture was stirred at room 

temperature for 24 h and rotavapored. Silica gel column was run with DCM:methanol 

(9.2:0.8 v/v) solvent system to obtain 46/47 (70-75%) as white solid. 

xiv: 
1
H NMR 400 mHz (CDCl3) δ 0.68 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.09 (44H), 2.50 (br, 1H), 3.14 (br, 2H), 3.33-3.36 (br, 3H), 4.13 (s, 2H), 4.19 (s, 

2H), 5.29-5.33 (t, 1H) 

xv: 
1
H NMR 400 mHz (CDCl3) δ 0.68 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.02 (48H), 2.54 (br, 1H), 3.14 (br, 2H), 3.30-3.34 (br, 3H), 4.19 (s, 2H), 4.23 (s, 

2H), 5.32-5.33 (t, 1H) 
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4.1.13 6-azidohexan-1-amine (50)/4-azidobutan-1-amine (49): 

 

A solution of 4-amino-butan-1-ol/6-amino-hexan-1-ol (1 equivalent) and thionyl chloride 

(4.5 equivalent) in toluene was refluxed for 1 h. After 1 h solvent was evaporated to 

obtain intermediate 6-chloro-1-hexylamine/4-chloro-1-butylamine. The intermediate was 

added to a solution of sodium azide (3 equivalent) in water. The reaction mixture was 

heated to 90
o
C and stirred for 2 h. After completion of reaction, it was basified to pH 12-

14 with KOH (solid), extracted with DCM, dried over sodium sulfate and concentrated in 

vacuo to afford 4-azidobutan-1-amine (49)/6-azidohexan-1-amine (50) (65-70 %) as 

brown liquid. 

49: 
1
H NMR 400 mHz (CDCl3) δ 1.50-1.68 (m, 4H), 2.71-2.75 (t, 2H), 3.27-3.31 (t, 2H) 

50: 
1
H NMR 400 mHz (DMSO) δ 1.29-1.54 (m, 6H), 2.49-2.52 (t, 2H), 3.29-3.33 (t, 2H) 

13
C NMR 100 mHz (DMSO) δ 25.91, 26.06, 28.24, 33.26, 41.56, 50.56 

 

4.1. 14 2-azidoethanamine hydrochloride salt (48): 
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A solution of 2-Bromo-ethyl amine hydro bromide salt (3 g, 14.64 mmol, 1 equivalent) 

was prepared in water (30 mL) and sodium azide (2.86 g, 43.92 mmol, 3 equivalent) was 

added . The reaction was stirred for 24 h at 80
o
C. After completion of reaction, solution 

was basified to pH 12-14 with solid KOH, extracted with ether, dried it over sodium 

sulfate and filtered. To the filtrate, added 4 M solution of HCL in dioxane (14 mL, 58.56 

mmol, 4 equivalent) and concentrated in vacuo to afford 2-azidoethanamine 

hydrochloride salt (900 mg, 50 %) as colorless liquid. 

xviii: 
1
H NMR 400 mHz (DMSO) δ 2.93-2.97 (m, 2H), 3.66-3.67 (t, 2H) 

13
C NMR 100 mHz (DMSO) δ 37.85, 47.92 

4.1.15 52-55 : 

 

To a solution of 46/47 (1 equivalent) in DCM was added 4-azidobutan-1-amine (49)/6-

azidohexan-1-amine (50) (2 equivalent) and EDCI (2 equivalent). The reaction mixture 

was stirred over night at room temperature. After completion of reaction, it was diluted 

with DCM, washed with water followed by washing with 0.5 N HCL and finally with 
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brine. Organic layer was dried over sodium sulfate and concentrated in vacuo. Silica gel 

column was run using DCM:methanol (9.6:0.4 v/v) solvent system as eluent to afford 52-

55 (75-80 %) as brown dense liquid. 

52: 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.02 (50H), 2.49 (br, 1H), 3.15 (br, 2H), 3.32-3.35 (m, 5H), 4.04 (s, 2H), 4.05 (s, 

2H), 5.32-5.33 (t, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.88-42.34 (30C), 50.16, 51.00, 51.02, 56.20, 56.77, 

71.28, 121.40, 168.48 

53: 
1
H NMR 400 mHz (CDCl3) δ 0.68 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.02 (54H), 2.49 (br, 1H), 3.15 (br, 2H), 3.25-3.32 (m, 5H), 4.04 (s, 4H), 5.32-5.33 

(t, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.88-42.34 (32C), 50.16, 51.34, 56.20, 56.77, 71.30, 

121.40, 168.37, 168.51 

54: 
1
H NMR 400 mHz (CDCl3) δ 0.68 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

1.00-2.04 (58H), 2.49 (br, 1H), 3.15 (br, 2H), 3.21-3.34 (m, 5H), 4.04 (s, 4H), 5.32-5.33 

(t, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.88-42.35 (34C), 50.20, 51.35, 56.21, 56.78, 71.25, 

71.32, 168.30 

1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 0.99-

1.99 (46H), 2.49 (br, 1H), 3.14 (br, 2H), 3.34-3.48 (m, 5H), 4.06 (s, 4H), 5.32-5.33 (t, 

1H) 
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13

C NMR 100 mHz (CDCl3) δ 11.88-42.34 (28C), 50.16, 50.61, 56.18, 56.76, 71.14, 

71.22, 79.50, 121.38, 168.48 

 

4.1.16 56 : 

 

To a solution of 44 (400 mg, 0.6 mmol, 1 equivalent) in DCM was added 2-

azidoethanamine hydrochloride salt (110 mg, 0.9 mmol, 1.5 equivalent), EDCI (170 mg, 

0.9 mmol, 1.5 equivalent) and di-isopropyl ethyl amine (0.15 mL, 0.9 mmol, 1.5 

equivalent). The reaction mixture was stirred over night at room temperature. After 

completion of reaction, it was diluted with DCM, washed with water followed by 

washing with 0.5 N HCL and finally with brine. Organic layer was dried over sodium 

sulfate and concentrated in vacuo. Silica gel column was run using DCM:methanol 

(9.6:0.4 v/v) solvent system as eluent to afford 56 (300 mg, 67 %) as brown dense liquid. 

1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 0.99-

1.99 (46H), 2.49 (br, 1H), 3.14 (br, 2H), 3.34-3.48 (m, 5H), 4.06 (s, 4H), 5.32-5.33 (t, 

1H) 
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13

C NMR 100 mHz (CDCl3) δ 11.88-42.34 (28C), 50.16, 50.61, 56.18, 56.76, 71.14, 

71.22, 79.50, 121.38, 168.48 

4.17 6- azidohexanoic acid : 

 

To a solution of bromohexanoic acid (6g, 31 mmol, 1 equivalent) in DMF (20 mL) was 

added sodium azide (4 g, 62 mmol, 2 equivalent). The solution was refluxed over night. 

After completion of reaction the solution was cooled and DMF was evaporated. The 

residue was dissolved in DCM. Organic layer was washed with 0.1 N HCL, dried over 

sodium sulfate  and concentrated in vacuo to obtain 6-azidohexanoic acid (3.96 g, 81%) 

as yellow oil. 

1
H NMR 400 mHz (CDCl3) δ 1.41-1.46 (m, 2H), 1.59-1.71 (m, 4H), 2.34-2.38 (t, 2H), 

3.26-3.29 (t, 2H) 

13
C NMR 100 mHz (CDCl3) δ 24.29, 26.21, 28.57, 36.65, 51.32, 178.03 
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4.1.18 : 

 

A solution of amine (12;p) (700mg, 1.26 mmol, 1 equivalent) in DCM (20 mL) was 

prepared. To this solution, 6-azidohexanoic acid (400 mg, 2.51 mmol, 2 equivalent), 

EDCI (362 mg, 1.89 mmol, 1.5 equivalent) and tri-ethylamine (0.1 mL, 0.63 mmol, 0.5 

equivalent) were added. The reaction mixture was stirred for 24 h at room temperature. 

After completion of reaction as evidence by TLC, reaction mixture was diluted with 10 

mL DCM and washed with water, 0.5 N HCL finally with brine. Organic layer was dried 

over sodium sulfater, filtered and concentrated in vacuo. Crude was purified by silica gel 

column using 4% methanol in DCM as eluent to afford 20 (600 mg, 68%) as colorless oil. 

1
H NMR 400 mHz (CDCl3) δ 0.68 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 0.99-

2.02 (52H), 2.17-2.20 (t, 2H), 2.5 (br, 1H), 3.10-3.12 (br, 2H), 3.24-3.29 (m, 3H), 5.32-

5.33 (t, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.88-42.34 (28C), 50.16, 51.24, 53.42, 56.19, 56.77, 

121.35, 177.53 
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4.1.19 65’, 66’, 57’-66’: 

 

65’ 

 

66’ 
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Alkyne (3/5) (2 equivalent) and azide (19/20/21/22/24) (1 equivalent) were dissolved in 

tetrahydrofuran:water (1:1). To that, sodium ascorbate (0.04 equivalent) and copper 

sulfate (0.02 equivalent) were added and reaction mixture was stirred for 24 h at 65
o
C. 

After completion of reaction DCM was added to reaction mixture and organic layer was 

washed with water followed by brine. Organic layer was dried over sodium sulfate, 
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filtered and concentrated in vacuo. Silica gel column was run using DCM:methanol 

(9.6:0.4 v/v) solvent system as eluent to afford 25-34 (40-40 %) as orange solid. 

65’: 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.02 (50H), 2.13-2.16 (t, 2H), 2.5 (br, 1H), 3.12 (br, 2H), 3.26 (m, 3H), 3.90 (s,3H), 

3.93 (s, 3H), 4.31-4.34 (t, 2H), 5.31 (br, 3H), 6.45-6.50 (m, 2H), 6.92-6.94 (d, 1H), 7.05-

7.12 (m, 6H), 7.56-7.63 (m, 3H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.33 (31C), 50.13, 50.18, 55.97, 56.18, 56.74, 

63.04, 101.25, 109.73-128.87 (13C), 140.12-149.69 (8C), 153.99, 182.91, 183.59 

66’: 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.02 (50H), 2.5 (br, 1H), 3.12 (br, 2H), 3.25 (m, 3H), 3.89 (s,3H), 3.91 (s, 3H), 4.24-

4.25 (t, 2H), 5.32 (br, 1H), 6.66-6.70 (m, 1H), 6.89-7.08 (m, 8H), 7.56-7.71 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.33 (31C), 49.99, 50.13, 53.43, 56.03, 56.10, 

56.18, 56.75, 109.73-127.73 (13C), 142.44-148.97 (8C), 183.59, 194.58 

57’: 
1
H NMR 400 mHz (CDCl3) δ 0.66 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.97-2.01 (44H), 2.5 (br, 1H), 3.12 (br, 2H), 3.35 (m, 2H), 3.80 (m, 3H), 3.90 (s, 3H), 

3.92 (s, 3H), 3.99 (s, 2H), 4.01 (s, 2H), 4.51 (t, 2H), 5.29 (br, 3H), 6.46 (m, 1H), 6.92-

6.94 (d, 1H), 7.05-7.12 (m, 7H), 7.57-7.59 (m, 2H),7.71 (s, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.32 (28C), 49.44, 50.13, 55.97, 56.17, 56.73, 

62.82, 101.29 109.73-127.65 (12C), 140.75, 146.86, 147.97, 149.61 

58’: 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.98-2.01 (48H), 2.5 (br, 1H), 3.13 (br, 2H), 3.31-3.34 (m, 4H),  3.90 (s, 3H), 3.94 (s, 
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3H), 4.03 (s, 4H), 4.36-4.39 (t, 2H), 5.30 (br, 3H), 6.45-6.50 (m, 2H), 6.92-6.94 (d, 1H), 

7.05-7.12 (m, 6H), 7.56-7.60 (m, 2H), 7.67 (s, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.32 (30C), 49.83, 50.12, 55.97, 56.17, 56.73, 

62.99, 71.20, 71. 24, 101.28, 109.73-128.93 (12C), 140.07-149-67 (8C), 182.86, 183.63 

59’: 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.98-2.01 (52H), 2.5 (br, 1H), 3.13 (br, 2H), 3.23-3.33 (m, 4H),  3.91 (s, 3H), 3.94 (s, 

3H), 4.03 (s, 4H), 4.33-4.36 (t, 2H), 5.33 (br, 3H), 6.46-6.51 (m, 2H), 6.92-6.94 (d, 1H), 

7.05-7.12 (m, 6H), 7.56-7.63 (m, 3H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.33 (32C), 50.13, 55.98, 56.18, 56.75, 63.06, 

71.26, 101.26, 109.71-128.89 (12C), 140.11-149-69 (8C), 182.95, 183.56 

60’: 
1
H NMR 400 mHz (CDCl3) δ 0.68 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.04 (56H), 2.5 (br, 1H), 3.15 (br, 2H), 3.25-3.35 (m, 5H),  3.91 (s, 3H), 3.94 (s, 

3H), 4.04 (s, 4H), 4.33-4.36 (t, 2H), 5.32 (br, 3H), 6.46-6.51 (m, 2H), 6.92-6.94 (d, 1H), 

7.05-7.12 (m, 6H), 7.56-7.63 (m, 3H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.33 (32C), 50.13, 55.98, 56.18, 56.75, 63.06, 

71.26, 101.26, 109.71-128.89 (12C), 140.11-149-69 (8C), 182.95, 183.56 

61': 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.98-2.04 (44H), 2.5 (br, 1H), 3.12 (br, 2H), 3.34-3.35 (br, 3H), 3.90 (s,3H), 3.93 (s, 3H), 

3.99 (s, 4H), 4.41-4.45 (m, 2H), 5.30 (br, 1H), 6.69-6.73 (d, 1H), 6.88-7.11 (m, 7H), 

7.59-7.72 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.33 (29C), 50.13, 56.05, 56.18, 56.74, 70.82, 

114.94, 124.22, 146.96 
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62’: 
1
H NMR 400 mHz (CDCl3) δ 0.60 (s, 3H), 0.78-0.80 (dd, 6H), 0.85 (d, 3H), 0.91-

1.95 (48H), 2.3 (br, 1H), 3.06-3.33 (m, 7H), 3.83 (s,3H), 3.85 (s, 3H), 3.95 (s, 4H), 4.20-

4.23 (t, 2H), 5.25 (br, 1H), 6.60-6.64 (d, 1H), 6.80-7.02 (m, 7H), 7.50-7.64 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 10.85-41.30 (31C), 48.66, 49.10, 55.02, 55.15, 55.73, 

70.14, 108.87, 113.94, 120.41, 123.17, 144.24, 145.98 

63’: 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.98-2.02 (52H), 2.5 (br, 1H), 3.13-3.40 (m, 8H), 3.89 (s,3H), 3.91 (s, 3H), 4.04 (s, 4H), 

4.24-4.26 (m, 2H), 5.30 (br, 1H), 6.64-6.68 (d, 1H), 6.84-7.08 (m, 7H), 7.55-7.71 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.33 (33C), 50.13, 53.42, 56.01, 56.17, 56.75, 

71.17, 109.92, 115.03, 117.74, 123.24, 124.14, 126.0, 127.73, 145.15, 148.95, 183.14 

64’: 
1
H NMR 400 mHz (CDCl3) δ 0.68 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.04 (52H), 2.6 (br, 1H), 3.08-3.41 (m, 8H), 3.90 (s,3H), 3.91 (s, 3H), 4.04 (s, 4H), 

4.23-4.26 (m, 2H), 5.31-5.32 (br, 1H), 6.66-6.69 (d, 1H), 6.86-7.08 (m, 8H), 7.56-7.60 (d, 

1H), 7.67-7.71 (d, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.89-42.35 (35C), 50.18, 56.06, 56.11, 56.21, 71.19, 

109.92-127.79 (14C), 142.36-148.94 (7C), 168.94, 183.14, 194.57 
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4.1.20 57-66: 

 

65 

 

66 
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Per 4 mmol of compound (25-34), 4 mL of DCM was taken to make solution. To this 

solution, added 1-4 mL of TFA and stirred for 2-6 h at room temperature. After 

completion of reaction solution was rotavapored.  Preparative TLC was run using 
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DCM:methanol (8.5:1.5 v/v) solvent system to afford pure final compound (35-44) (20-

30 %) as orange solid. 

65: 
1
H NMR 400 mHz (CDCl3) δ 0.65 (s, 3H), 0.84-0.86 (dd, 6H), 0.87-0.90 (d, 3H), 

0.96-2.04 (41H), 2.13-2.16 (t, 2H), 2.6 (br, 1H), 2.96 (br, 2H), 3.22 (m, 3H), 3.87 (s,3H), 

3.92 (s, 3H),  4.33 (br, 2H), 5.35 (br, 3H), 6.49 (d, 2H), 6.92-6.94 (d, 1H), 7.04-7.19 (m, 

6H), 7.55-7.63 (m, 3H) 

13
C NMR 100 mHz (CDCl3) δ 11.86-42.29 (28C), 44.53, 49.91, 50.32, 50.18, 55.93, 

55.97, 56.17, 56.63, 58.44, 62.73, 101.34, 109.77-128.87 (12C), 138.13-149.64 (8C), 

182.83, 183.64 

66: 
1
H NMR 400 mHz (CDCl3) δ 0.67 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.28 (41H), 2.48 (br, 1H), 2.64 (br, 1H), 2.89-2.99 (m, 2H), 3.22-3.26 (m, 3H), 3.40 

(br, 2H), 3.87 (s,3H), 3.90 (s, 3H), 4.24-4.28 (t, 2H), 5.39 (br, 1H), 6.69-6.74 (m, 1H), 

6.88-7.13 (m, 8H), 7.59-7.71 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.30 (28C), 49.94, 51.27, 56.03, 56.09, 56.15, 

56.66, 110.00-127.72 (13C), 138.14-149.00 (8C), 174.07, 183.19, 194.69 

57: 
1
H NMR 400 mHz (CDCl3) δ 0.58 (s, 3H), 0.77-0.79 (dd, 6H), 0.83 (d, 3H), 0.90-

2.00 (35H), 2.40 (br, 1H), 2.52-2.58 (t, 1H), 2.9 (br, 3H),  3.28 (br, 2H), 3.79 (s, 3H), 

3.85 (s, 3H), 3.89 (s, 4H), 4.53 (t, 2H), 5.13 (s, 2H), 5.30 (br, 3H), 6.36-6.42 (m, 2H), 

6.83-6.85 (d, 1H), 6.91-7.02 (m, 6H), 7.46-7.51 (m, 2H), 7.72 (s, 1H) 

13
C NMR 100 mHz (CDCl3) δ 10.85-41.27 (25C), 43.43, 48.34, 48.89, 54.90, 54.94, 

55.15, 57.43, 61.57, 69.62, 100.36, 108.75-127.65 (12C), 137.12-148.59 (8C), 168.23, 

168.50, 181.66, 182.72 
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58: 
1
H NMR 400 mHz (CDCl3) δ 0.65 (s, 3H), 0.84-0.87 (dd, 6H), 0.89-0.90 (d, 3H), 

0.94-2.03 (39H), 2.36 (br, 1H), 2.47 (t, 1H), 2.87-2.95 (br, 3H),  3.25-3.39 (m, 4H),  3.88 

(s, 3H), 3.92 (s, 3H), 4.00 (s, 4H), 4.33-4.37 (t, 2H), 5.24 (s, 2H), 5.37 (br, 1H), 6.44-6.50 

(m, 2H), 6.91-6.93 (d, 1H), 6.97-7.10 (m, 5H), 7.54-7.59 (m, 2H), 7.71 (s, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.29 (27C), 44.30, 49.90, 50.07, 55.91, 55.96, 

56.17, 56.60, 58.33, 62.70, 70.75, 70.89, 101.35, 109.81-129.04 (12C), 138.03-149.44 

(8C), 182.74, 183.71 

59: 
1
H NMR 400 mHz (CDCl3) δ 0.65 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.95-2.01 (43H), 2.37 (br, 1H), 2.46 (br, 1H), 2.84-2.96 (br, 3H), 3.21-3.25 (m, 4H), 3.89 

(s, 3H), 3.93 (s, 3H), 4.01 (s, 4H), 4.31-4.33 (m, 2H), 5.28 (s, 2H), 5.36 (br, 1H), 6.45-

6.49 (m, 2H), 6.91-6.93 (d, 1H), 6.98-7.11 (m, 5H), 7.54-7.60 (m, 2H), 7.67 (s, 1H) 

13
C NMR 100 mHz (CDCl3) δ 11.85-42.30 (29C), 49.92, 50.26, 55.97, 56.07, 56.17, 

56.63, 58.26, 62.87, 70.86, 71.02, 101.30, 109.20-128.97 (12C), 138.09-149-69 (8C), 

169.03, 169.55, 182.86, 183.64 

60: 
1
H NMR 400 mHz (CDCl3) δ 0.66 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.99-2.04 (56H), 2.36 (br, 1H), 2.47 (br, 1H), 2.84-2.96 (br, 3H), 3.21-3.25 (m, 4H), 3.90 

(s, 3H), 3.94 (s, 3H), 4.03 (s, 4H), 4.31-4.34 (t, 2H), 5.28 (s, 2H),  5.36 (br, 1H), 6.46-

6.51 (m, 2H), 6.71-673 (d, 1H),  6.89-6.92 (d, 1H), 6.99-7.19 (m, 5H), 7.56-7.69 (m, 3H) 

13
C NMR 100 mHz (CDCl3) δ 11.86-42.33 (29C), 53.41, 56.00, 56.20, 56.67, 71.16, 

109.78, 114.79, 121.76, 123.59, 140.08 

61: 
1
H NMR 400 mHz (CDCl3) δ 0.64 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.91 (d, 3H), 

0.98-2.04 (35H), 2.34-2.48 (br, 2H), 2.93 (br, 3H), 3.34-3.35 (br, 3H), 3.90 (s,3H), 3.93 
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(s, 3H), 3.99 (s, 4H), 4.41-4.45 (m, 2H), 5.34 (br, 1H), 6.70-6.73 (br, 2H), 6.88-7.04 (m, 

6H), 7.47-7.65 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 11.87-42.33 (26C), 50.13, 56.05, 56.18, 56.74, 70.82, 

114.94, 124.22, 146.96 

62: 
1
H NMR 400 mHz (CDCl3) δ 0.65 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.91 (d, 3H), 

0.94-2.01 (39H), 2.37 (br, 1H), 2.48 (br, 1H), 2.94-2.98 (br, 3H), 3.87 (s,3H), 3.88 (s, 

3H), 3.97 (s, 4H), 4.26 (m, 2H), 5.35 (br, 1H), 6.68-6.72 (d, 1H), 6.86-7.07 (m, 6H), 

7.57-7.69 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 10.85-42.30 (28C), 49.92, 56.03, 56.16, 56.63, 58.38, 

115.14, 147.18, 148.48, 149.22, 194.54 

63: 
1
H NMR 400 mHz (CDCl3) δ 0.59 (s, 3H), 0.76-0.80 (dd, 6H), 0.83-0.84 (d, 3H), 

0.88-1.95 (43H), 2.32 (br, 1H), 2.47 (br, 1H), 2.83 (br, 3H), 2.98-3.15 (m, 4H), 3.79 

(s,3H), 3.80 (s, 3H), 3.94 (s, 4H), 4.14-4.18 (m, 2H), 5.29 (br, 1H), 6.60-6.64 (d, 1H), 

6.79-6.98 (m, 8H), 7.48-7.62 (m, 2H) 

13
C NMR 100 mHz (CDCl3) δ 10.84-41.29 (30C), 43.55, 48.93, 55.02, 55.16, 55.63, 

57.13, 69.94, 109.18-126.71 (14C), 137.12-148.21 (7C), 168.04, 182.12, 193.68 

64: 
1
H NMR 400 mHz (CDCl3) δ 0.66 (s, 3H), 0.85-0.87 (dd, 6H), 0.90-0.92 (d, 3H), 

0.95-2.02 (47H), 2.37 (br, 1H), 2.47 (br, 1H), 2.89 (br, 3H), 3.06-3.23 (m, 4H), 3.87 (s, 

3H), 3.89 (s, 3H), 4.01 (s, 4H), 4.23-4.26 (m, 2H), 5.36 (br, 1H), 6.66-6.73 (d, 1H), 6.86-

7.09 (m, 6H), 7.23 (m, 1H), 7.34 (m, 1H), 7.55-7.69 (m, 2H) 
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13

C NMR 100 mHz (CDCl3) δ 11.87-42.32 (32C), 44.64, 49.98, 53.42, 56.05, 56.19, 

56.68, 58.14, 71.04, 110.20-130.43 (14C), 138.30-149.30 (7C), 168.92, 168.97, 183.15, 

194.6 
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4.2 Biology 

4.2.1 Inhibition of Aβ42 Oligomerization: (Aβ42+compound+lipid raft) 

1) 50uM of Aβ42 stock solution: 40ug Aβ42 dissolved in 17uL of DMSO and diluted in 

160uL of F-12 media. 

2) 2 mM of compounds stock solution: 

3) Preparation of samples: Compounds (1uL) are added to each eppendorf tube and 

then Aβ42 (5uL) was incubated with 44uL of rat brain lipid rafts (5
th

 fraction) at 4 
0
C for  

30min/1h. 

Items Volume/Final Conc Control 

Aβ42 (50uM) 5uL/5uM 5uL/5uM 

Compounds 1uL/40uM F-12 medium 1uL 

Lipid rafts 44uL 40uL 

Total Volume 50uL 50uL 

4)  After incubation, to the mixture (20uL) was added 20uL of tricine sample buffer (with 

reducing agents) and boiled for 5min. 

5) The samples (20uL) were electrophored on a 10-20% tris/tricine gel. (100 V, 2h) 

6) The proteins are transferred to PVDF membrane. (100 V, 1h) 
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7) The membranes are blocked with 5% non-fat milk.(1h) 

8) The membranes are blotted with anti-Aβ42 antibody (6E10: 1/1000, 5% non-fat milk) 

(overnight) 

9) Wash with TBS-T buffer. (3x15min) 

10) Apply secondary antibody (anti-mouse: 1/2000, 5% non-fat milk)(1h) 

11) Wash with TBS-T buffer (3x15min) 

12) Develop X-ray films in dark room. 

4.2.2 Inhibition of Aβ42 Oligomerization: (Aβ42+compound) 

1) 50uM of Aβ42 stock solution: 40ug Aβ42 dissolved in 17uL of DMSO and diluted in 

160uL of F-12 media. 

2) 2mM of compounds stock solution: 

3) Preparation of samples: Compounds (1uL) are added to 44uL Ham‟s F-12 media and 

then it was incubated with 5uL Aβ42 at 37 
0
C for 4h. 

Items Volume/Final Conc Control 

Aβ42 (50uM) 5uL/5uM 5uL/5uM 

Compounds 1uL/2mM F-12 medium 1uL 
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Ham‟s F-12 media 44uL 44uL 

Total volume 50uL 50uL 

 

4) After incubation, the samples were spun down at 14000g for 15 min. The supernatant 

(20uL) was mixed with equal amount of tricine sample buffer (without reducing agent) 

and mixture (20uL) was electrophoresed on 10-20% tris/tricine gel. The control was 

stored at -80 
0
C and mixed with equal amount of tricine sample buffer before 

electrophoresed. 

5) The proteins are transferred to PVDF membrane. (100 V, 1h) 

6) The membranes are blocked with 5% non-fat milk.(1h) 

7) The membranes are blotted with anti-Aβ42 antibody (6E10: 1/1000, 5% non-fat milk) 

(overnight) 

8) Wash with TBS-T buffer. (3x15min) 

9) Apply secondary antibody (anti-mouse: 1/2000, 5% non-fat milk)(1h) 

10) Wash with TBS-T buffer (3x15min) 

11) Develop X-ray films in dark room. 

4.2.3 MC65 cells assays: 
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MC65 cells culture: 

Stock solution: 

10 mg/mL tetracycline: Dissolve 10mg of TC into 1mL 70% ethanol and the stock 

solution is stored at -20 
0
C. 

40 mg/mL G418: Dissolve 40mg of G418 into 1mL DMEM medium and the stock 

solution is stored in 4 
0
C. 

Growing medium: DMEM is supplemented with 10% FBS, 100/100 P/S, 1 ug/mL TC 

and 0.2 mg/mL G418. 

Thaw frozen cells quickly at 37 
0
C water bath. Cells are suspended in 10mL DMEM 

(complete). Centrifuge at 2500 rpm for 3 min. Cells are re-suspended in 10mL DMEM 

(complete) and put into T25 flasks. Medium is changed every two days. After 70-90 

confluence, split cells (1 to 2 ratio) into T75 flasks (remove medium, wash cells with 

PBS – 10 mL/twice, remove PBS, 1mL 0.25% trypsin-EDTA is added  and incubate for 

30 s, 9 mL DMEM is added, centrifuge for 3 min at 2500 rpm, the pellet is re-suspended 

in DMEM (complete) for splitting.). Change medium every 2 days. 

4.2.4 Western blot assay: 

MC65 cells were seeded in 6-well plates [0.5 * 10
6
/well, working volume 2 mL – DMEM 

growing media]. After incubation at 37 
0
C, 5% CO2 for 24 h or more (change media 

every two days. 70-80 confluence), the medium was removed and washed twice with 
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PBS. The medium was replaced with fresh Opti-MEM (Invitrogen)and compounds in 

Opti-MEM (with or without TC) wereadded. After 24 h incubation, cells were collected 

on ice andcentrifuged. Pellet was lysed by sonication in 1_ lysis buffer(62.5 mM Tris 

base, pH 6.8, 2% SDS, 50 mM DTT, 10%glycerol, 0.1% bromphenol blue, and 5 mg/mL 

each chymostatin,leupeptin, aprotinin, pepstatin, and soybean trypsin inhibitor)and 

protein level was determined using CoomassieProtein Assay Reagent (Pierce, Rockford, 

IL). Equal amountsof protein (10 μg) were separated by SDS-PAGE on 10-20%tris-

tricine gel (Bio-Rad) and transferred onto a PVDF membrane(Bio-Rad). The blots were 

blocked with 5% milk in TBSTween20 (0.1%) at room temperature for 1 h and probed 

withprimary 6E10 (1:2000) antibody overnight at 4 _C. Theblots were then incubated 

with horseradish peroxidaseconjugatedsecondary antibody (1:2000. Kirkegaard & Perry, 

Gaithersburg, MD). The proteins were visualized by WesternBlot Chemiluminescence 

Reagent (NEN Life Science Products,Boston, MA). 

4.2.5Cell viability assay: (MTS) 

MC65 cells were seeded in 96-well plates [1 * 10
5
/well, working volume 100uL – 

DMEM growing media]. After incubation at 37 
0
C, 5% CO2 for 24 h (depends on the 

cells state) (70-80 Confluence) the medium was removed and washed 3 times with PBS. 

Opti-MEM (50uL) was added and incubated for 1h (need to set +TC control). 50uL drug 

solution (double the concentration of final concentration) in Opti-MEM was added. 

Incubated for 72 h. 20 uL MTS agents were added and incubated at 37 
0
C, 5% CO2 for 

1h. Read the plate at 490nM in plate reader. 
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4.2.6 Cell viability assay: (MTT) 

MC65 cells were seeded in 96-well plates [1 * 10
5
/well, working volume 100uL – 

DMEM growing media]. After incubation at 37 
0
C, 5% CO2 for 24 h (depends on the 

cells state) (70-80 Confluence) the medium was removed and washed 3 times with PBS. 

Opti-MEM (50uL) was added and incubated for 1h (need to set +TC control). 50uL drug 

solution (double the concentration of final concentration) in Opti-MEM was added. 

Incubated for 72 h.  After incubating for 72 h media was replaced with fresh opti-MEM 

using centrifuge. 10uL of MTT (5mg/mL in PBS) was added and incubated for 4 hr. 

Removed  60 uL of opti-MEM solution from total of 110 uL  and added 100 uL of 

DMSO to dissolve the crystals generated from the reaction of living cells and MTT 

reagent. Finally, plate was read at 490 on plate reader. 

4.2.7 DCFH-DA assay: MC65 cells were seeded in 96-well plates [4 * 10
4
/well, working 

volume 100 uL DMEM media). After incubation at 37 
0
C, 5% CO2 for 24 h (depends on 

the cells state – 70-80 confluence), the medium is removed and washed 3 times with 

PBS. Control was set up (one side complete DMEM (+TC control), the other side use 

pure opti-MEM (-TC control), 100 uL medium is added. For drug treated wells, Opti-

MEM (50 uL) is added and incubated for 1h. Then 50 uL drug solution (double the 

concentration needed) in opti-MEM was added. Incubated for 24 h. 10 mM stock DCFH-

DA was diluted into opti-MEM to a final 50 uM concentration, then 100 uL was added to 

each well (final DCFH-DA concentration was 25 uM) and incubated at 37 
0
C, 5% CO2 
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for 30 min. Media was removed and washed with opti-MEM twice. Finally 100 uL opti-

MEM was added and read for fluorescence at 485/520 nM. 

4.2.8 Immunocytochemistry Assay: 

Reagents: 

 A11 oligomer Rabbit polyclonal antiboay (50 ug, AHB0052-Invitrogen) 

 Alexa Fluor 568 donkey anti – rabbit IgG (0.5 mL, A10042-Invitrogen) 

 Alexa 488 conjugated cholera toxin B (100 ug, C34775-Invitrogen) 

Solutions: 

 4% paraformaldehyde (PFA) in PBS 

o.4 g paraformaldehyde in 5mL PBS was added 100 uL 1N NaOH. Heat this 

mixture at 60 
0
C until the PFA is dissolved. Dilute the solution to 10 mL with 

PBS. 

 20 mL 1% BSA in PBS 

 Working solutions of all antibodies in 0.1% BSA in PBS 

Protocol: 

MC65 cells were plated onto Lab-Tec chamber slides 4-well at 2 * 10
5 

well in 500 uL 

working volume of DMEM supplemented with 10% FBS, 1 ug/mL TC and 0.2 mg/mL 

GG418. After 24 h incubation at 37 
0
C and 5% CO2, (50 % confluence) the medium was 

removed and rinsed twice in 500 uL (per chamber) PBS at room temperature. 500 uL 

opti-MEM was added to each chamber with or without TC. Cells were incubated for 2 h. 

Then test compounds in 500 uL opti-MEM were added and the cells were incubated for 
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24 h. Rinsed 3 times with warm (37 0C) PBS (500 uL/chamber) (5 min each). Incubated 

the cells with Alexa 488-conjugated CTX (10ug/ml in 0.1% BSA in PBS) for 15 min on 

ice. Rinsed once with ice-cold PBS (1mL/well). Fixed the cells for 30 min at RT with 500 

uL/chamber 4% paraformaldehyde. Washed 3 times with RT PBS (500 uL/chamber). 

Permeabilized cells for 30 min at RT with 0.1% Trition × 100 and 0.1% BSA in PBS. 

Washed 3 times with RT PBS. Incubated the cells in 1% BSA (0.5 mL) for 1h. Washed 3 

times with RT PBS. Incubated cells in 250 uL of the working concentration of A11 rabbit 

antibody diluted in 0.1% BSA in PBS (1:500 v/v) for 2 h. Washed 3 times with RT PBS. 

Secondary antibody in the dark: anti-rabbit Alex 568 (1:500) (diluted into 0.1% BSA in 

PBS). Washed 3 times with RT PBS. DAPI Hoechst 33342 (5 ug/mL in PBS) treated for 

5 min. Washed 3 times with RT PBS. Drained excess liquid and allowed the slide to dry 

and removed the plastic chamber piece and sealer holding it in place completely. Place 

one drop of Vectashield Mounting Media on each sheet of cells (1 for each chamber) and 

cover with No. 1.5 thickness cover slip. Gently push out any air bubbles and seal the 

edges with clear nail polish. Stored slides at 4 
0
C in the dark before and in between 

viewing under fluorescence. 
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